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Abstract
CodeLLMs have gained widespread adoption
for code generation tasks, yet their capacity to
handle repository-level code generation with
complex contextual dependencies remains un-
derexplored. Our work underscores the critical
importance of leveraging repository-level con-
texts to generate executable and functionally
correct code. We present REPOEXEC, a novel
benchmark designed to evaluate repository-
level code generation, with a focus on three
key aspects: executability, functional correct-
ness through comprehensive test case genera-
tion, and accurate utilization of cross-file con-
texts. Our study examines a controlled sce-
nario where developers specify essential code
dependencies (contexts), challenging models
to integrate them effectively. Additionally, we
introduce an instruction-tuned dataset that en-
hances CodeLLMs’ ability to leverage depen-
dencies, along with a new metric, Dependency
Invocation Rate (DIR), to quantify context uti-
lization. Experimental results reveal that while
pretrained LLMs demonstrate superior perfor-
mance in terms of correctness, instruction-
tuned models excel in context utilization and
debugging capabilities. REPOEXEC offers a
comprehensive evaluation framework for as-
sessing code functionality and alignment with
developer intent, thereby advancing the devel-
opment of more reliable CodeLLMs for real-
world applications. The dataset and source
code are available at https://github.com/
FSoft-AI4Code/RepoExec.

1 Introduction

Code Large Language Models (CodeLLMs) have
emerged as powerful tools for assisting with coding
tasks (Wang et al., 2021, 2023; Feng et al., 2020;
Allal et al., 2023; Li et al., 2023; Lozhkov et al.,
2024; Guo et al., 2024; Pinnaparaju et al., 2024;
Zheng et al., 2024; Roziere et al., 2023; Nijkamp
et al., 2022; Luo et al., 2023; Xu et al., 2022; Bui
et al., 2023). While these models excel at gen-
erating code from natural language requirements

or completing individual lines of code, their ap-
plication in real-world, professional software de-
velopment scenarios presents more complex chal-
lenges. A critical aspect of this complexity lies in
leveraging relevant contexts across an entire soft-
ware repository, which raises two pivotal questions.
First, to what extent are the retrieved dependencies
accurate and relevant, rather than potential noise
in the input? Second, how effectively do LLMs
process and incorporate the provided dependen-
cies into their generated code? These inquiries
are central to understanding the capabilities and
limitations of CodeLLMs in repository-level code
generation, where completing a single line of code
might require making API calls to functions within
the same file (in-file context) or across different
files (cross-file context).

Existing repository-level code generation bench-
marks, such as RepoBench (Liu et al., 2023b),
RepoCoder (Zhang et al., 2023a), CrossCodeE-
val (Ding et al., 2023), CoCoMIC (Ding et al.,
2024), and DevEval (Li et al., 2024), have made
significant strides in assessing code generation at a
repository-level scale. However, these benchmarks
face several limitations that hinder their ability to
comprehensively evaluate real-world coding sce-
narios:

1. Lack of an executable environment: This
leads to reliance on match-based metrics, which
are not robust for assessing the functional cor-
rectness of generated code.

2. Inadequate control over test quality: Al-
though RepoCoder and DevEval ensure exe-
cutability, they depend on pre-existing test cases
extracted from repositories, limiting the robust-
ness of evaluation and hindering the scalability
of the data pipeline (Liu et al., 2023a).

3. Overreliance on functional correctness met-
rics like pass@k: These metrics, inherited from
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Figure 1: Data Processing Pipeline of REPOEXEC

standalone code generation studies (Chen et al.,
2021; Austin et al., 2021), are insufficient in the
context of repository-level code generation.

Moreover, real-world development practices of-
ten involve breaking down large functions into
smaller modules (functions, classes, or variables) to
enhance problem-solving efficiency. Consequently,
generated code must effectively call these prede-
fined dependencies to align with developer intent.
However, LLMs may produce code that passes
test cases but relies on inefficient workarounds or
unnecessarily reimplements predefined functions.
This can lead to suboptimal implementations, code
duplication, and potential risks such as technical
debt and code smell issues (Maldonado and Shihab,
2015; Sierra et al., 2019; Rasool and Arshad, 2015;
Santos et al., 2018).

Given these challenges, it is evident that evalu-
ating CodeLLMs based solely on functional cor-
rectness is insufficient. There is a pressing need
for a more comprehensive evaluation strategy that
assesses not only the correctness of generated code
but also its alignment with developer intent, effi-
ciency in utilizing provided dependencies, and ad-
herence to best practices in software development.
Crucially, our research reveals a strong correla-
tion between functional correctness (as measured
by pass@1) and effective dependency utilization,
suggesting that models that better leverage contex-
tual information tend to produce more accurate and
functionally correct code.

To effectively address these shortcomings, we in-
troduce a paradigm for evaluation that emphasizes
both functional correctness and dependency utiliza-
tion, while also exploring their relation. Specif-
ically, we introduce the Dependency Invocation
Rate (DIR), a novel metric that measures the pro-
portion of code dependencies successfully inte-
grated into the generated code. Higher DIR val-
ues indicate better model comprehension of depen-

dencies, while lower values suggest challenges in
dependency utilization. Importantly, our findings
demonstrate a strong correlation between DIR and
pass@1 rates, underscoring the critical role of ef-
fective context utilization in producing high-quality,
functionally correct code.

We also introduce REPOEXEC, a novel bench-
mark specifically designed to overcome the limi-
tations of existing benchmarks, providing a robust
and comprehensive evaluation for code generation
at real-world applicability. In detail, REPOEXEC

advances with two primary focuses:

• Executability and Dynamic Test Case Gener-
ation: REPOEXEC ensures an executable envi-
ronment within the repository context, thereby
providing a reliable evaluation of functional cor-
rectness. Besides, it also incorporates a practi-
cal mechanism for dynamically generating high-
coverage test cases tailored to the functionality
of the newly generated code, ensuring that the
code performs its intended tasks accurately.

• Dependency Usage: REPOEXEC provides a
pipeline to evaluate the usage of dependencies
across CodeLLMs, offering insights on how well
code dependencies should be provided. Addition-
ally, we introduce an instruction-tuning dataset
with dependency calls, which significantly im-
proves CodeLLMs’ ability to leverage code de-
pendencies and produce better results.

Our experiments with REPOEXEC reveal key
insights into repository-level code generation by
CodeLLMs. Models achieve optimal performance
with full context dependencies, though smaller con-
texts outperform medium ones due to formatting
issues in the BasePrompt. While pretrained LLMs
like Codellama-34b-Python lead in pass@1 rates,
instruction-tuned LLMs are better at managing de-
pendencies, despite sometimes generating overly



complex code. In contrast, pretrained LLMs pro-
duce accurate code but struggle with dependency
utilization. These findings further reinforce the
observed correlation between pass@1 and DIR,
highlighting the importance of balancing accuracy
and context utilization in CodeLLM performance.

Furthermore, we explore two potential ap-
proaches for enhancing the quality of generated
code: Multi-round debugging and Instruction tun-
ing. Multi-round debugging with test execution,
especially with GPT-3.5 and WizardCoder, signifi-
cantly improves both pass@1 scores and DIR after
three rounds. Fine-tuning with our dependency-
enhanced dataset not only boosts pass@1 and DIR
metrics but also minimizes computational costs,
highlighting the importance of executable code test-
ing and the advantages of instruction-tuning and
multi-round debugging in enhancing CodeLLMs’
performance and dependency management.

In summary, our contributions are as follows:

1. We introduce a novel evaluation paradigm aimed
at providing a robust and comprehensive assess-
ment for repository-level code generation. Our
approach not only evaluates the functional cor-
rectness of generated code but also considers ad-
ditional quality factors such as maintainability
and adherence to clean code principles through
effective dependency utilization.

2. We present the Dependency Invocation Rate
(DIR), a novel metric that measures the pro-
portion of provided dependencies successfully
incorporated into the generated code. This met-
ric helps gauge the models’ understanding and
utilization of dependencies and shows a strong
correlation with functional correctness.

3. We introduce REPOEXEC, a novel benchmark
that aligns with our evaluation paradigm, ad-
dressing the gaps in existing benchmarks and
offering a comprehensive assessment of code
generation quality.

4. We implement an effective pipeline within RE-
POEXEC from dependency extraction, dynami-
cally generate high-coverage test cases and au-
tomatic evaluation with execution and code de-
pendencies. Our pipeline offers practical usage
and scalability for the community.

5. We release a tool named pydepcall1 to extract
1https://github.com/FSoft-AI4Code/pydep/tree/

main

dependencies for all functions within any repos-
itory, providing a practical use for advancing
research in this domain.

6. Our experiments provide crucial insights into
the performance of CodeLLMs in repository-
level code generation. We demonstrate that
while foundation models achieve high initial
accuracy, instruction-tuned models excel in de-
pendency management and addressing complex
scenarios. Additionally, our multi-round debug-
ging tests show notable improvements in model
performance, particularly with enhancements in
dependency management. Importantly, we es-
tablish a strong correlation between pass@1 and
DIR, emphasizing that models which better uti-
lize contexts tend to produce more functionally
correct code.

2 Related works

Coding-related tasks have been crucial for assess-
ing the performance of Large Language Models
(LLMs), with code generation emerging as a pri-
mary focus (Chen et al., 2021; Li et al., 2023; Jiang
et al., 2024; Touvron et al., 2023; Roziere et al.,
2023; Xu et al., 2022; Allal et al., 2023; Nijkamp
et al., 2022). Early benchmarks have been intro-
duced to address this issue (Yin et al., 2018; Iyer
et al., 2018; Nguyen et al., 2023; Chen et al., 2021;
Austin et al., 2021; Hendrycks et al., 2021); how-
ever, they often had limited scope or employed
weak evaluation approaches. Some benchmarks
(Yin et al., 2018; Iyer et al., 2018; Nguyen et al.,
2023) exhibit domain diversity akin to real-world
applications; however, their evaluation method-
ologies are constrained to match-based metrics,
thereby decreasing the reliability of these bench-
marks (Chen et al., 2021). Meanwhile, benchmarks
with reliable evaluation approaches such as Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021) and APPS (Hendrycks et al., 2021) often en-
tail limitations to specific domains like competitive
programming. Recently, there have been efforts
to extend the domains of generation tasks in var-
ious benchmarks. For instance, ExeDS (Huang
et al., 2022) focuses on data science code gener-
ation, while ODEX (Wang et al., 2022) serves as
an open-domain benchmark for code generation.
Besides, all the benchmarks mentioned primarily
focus on standalone function generation, lacking
consideration for cross-contextual and dependency
invocation scenarios.

https://github.com/FSoft-AI4Code/pydep/tree/main
https://github.com/FSoft-AI4Code/pydep/tree/main


Several recent studies have introduced frame-
works and benchmarks for repository-level code
generation (Ding et al., 2024; Shrivastava et al.,
2023; Ding et al., 2023; Liao et al., 2023; Liu et al.,
2023b). These studies closely align with real-world
scenarios, underscoring the importance of cross-
contextual considerations. However, these works
are still limited to match-based evaluation meth-
ods. A recent study (Li et al., 2024) introduced
the DevEval benchmark for code generation within
repository contexts, evaluating performance based
on extracted tests available in the repository. These
benchmarks primarily focus on assessing the func-
tional correctness of generated outputs but have not
extensively investigated the correctness in conjunc-
tion with the ability to utilize dependency contexts.

3 Evaluation Paradigm

In this section, we outline our approach to achieve
a more robust and comprehensive evaluation of
repository-level code generation. Our paradigm
encompasses two key attributes: Functional cor-
rectness and Dependency utilization.
Functional correctness: This evaluation criterion
ensures that the code accurately performs its in-
tended tasks and requirements. Specifically, it typi-
cally involves using test cases to compare the exe-
cution output of the generated code against the ex-
pected output for a given input. This criterion has
been widely employed for evaluating code genera-
tion in numerous studies (Chen et al., 2021; Austin
et al., 2021; Zhuo et al., 2024; Li et al., 2024). We
follow the well-known automatic metric Pass@k
(Chen et al., 2021) to measure the functional cor-
rectness of generation outputs.
Dependency utilization: However, functional cor-
rectness alone cannot fully assess code quality,
as it may overlook issues like poor implementa-
tion, workaround solutions, or code redundancy.
Assuming that human-written solutions are opti-
mal, match-based metrics like BLEU and edit sim-
ilarity can assess the alignment between the gen-
erated code and the high-quality reference solu-
tion at the token, word, or character level. How-
ever, not all words and tokens contribute to the
quality of the code and alternative implementa-
tions can preserve the quality despite low simi-
larity scores. For instance, local variable names or
comments can vary widely without impacting code
quality. Additionally, statements like while and
for can be interchangeable while preserving the

algorithm’s complexity. Thus, these match-based
metrics are also not reliable for accurately measur-
ing code quality. Meanwhile, tokens representing
called dependencies—such as third-party packages,
functions, variables, and classes within the repos-
itory—demonstrate effective use of quality code
for efficient implementation. In contrast, ignoring
these dependencies may suggest workaround imple-
mentations misaligned with human intent, leading
to extensive verification and maintenance costs.

Therefore, to assess the models’ ability to utilize
provided dependencies in accordance with human
intent, we introduce the Dependency Invocation
Rate (DIR). This metric represents the percentage
of invoked dependencies out of the total number of
dependencies provided. Let Dg denote the set of
identifiers in the generated output, and Ds denote
the set of provided dependencies extracted from the
solution. The Dependency Invocation Rate (DIR)
is calculated as follows:

DIR =
|Dg ∩Ds|

|Ds|

A higher DIR indicates that the model successfully
incorporates a larger proportion of the provided
dependencies into the generated code, demonstrat-
ing a better understanding of the dependencies’
relevance and their intended usage. Conversely, a
lower DIR suggests that the model may struggle to
identify and utilize the appropriate dependencies,
potentially generating code that is less aligned with
the human-written solution.

In summary, we state that achieving a high-
quality solution requires the generated code to ex-
cel in both functional correctness and dependency
utilization. Otherwise, it indicates a lack of abil-
ity to generate correct solutions for the intended
tasks or suggests poor implementation practices,
including technical debt or code smell issues.

4 Data Collection Pipeline

4.1 Data Source

Developing an executable benchmark within repos-
itory contexts is challenging due to complex setup
requirements and frequent lack of clear installation
guidelines in repositories. Previous studies (Ding
et al., 2024; Shrivastava et al., 2023; Ding et al.,
2023; Liao et al., 2023) have often relied on match-
based metrics for evaluation, which may not fully
capture code functionality. In addition, test cases



errors.py

    """
    Custom error raised when received object is not       
    a string as expected.
    """

"""
:param input_data: Any received object 
"""

...

...

type_name = type(input_data).__name__
msg = 'Expected "str", received "

{}"'.format(type_name)
super().__init__(msg)

class InvalidInputError(TypeError):

    def __init__(self, input_data: Any):

validation.py

...

...

def is_string(obj: Any) -> bool:

    return isinstance(obj, str)

def is_camel_case(input_string: Any) -> bool:

    return is_full_string(input_string) and
CAMEL_CASE_TEST_RE.match(input_string) is
not None

 Prompt

manipulation.py

...

CAMEL_CASE_REPLACE_RE = re.compile(r'([a-z]|[A-Z]+)(?
=[A-Z])')

def camel_case_to_snake(input_string,
separator=DEFAULT_SEPERTATOR):
    """
    Convert a camel case string into a snake case one.
    (The original string is returned if is not a valid   
    camel case string)

    *Example:*

    >>> camel_case_to_snake('ThisIsACamelStringTest') # 
    returns 'this_is_a_camel_case_string_test'

    :param input_string: String to convert.
    :type input_string: str
    :param separator: Sign to use as separator.
    :type separator: str
    :return: Converted string.
    """

    if not is_string(input_string):
        raise InvalidInputError(input_string)

    if not is_camel_case(input_string):
        return input_string

    return CAMEL_CASE_REPLACE_RE.sub(lambda m:
m.group(1) + separator,
input_string).lower()

import base64
import random
import unicodedata
import zlib
from typing import Union
from uuid import uuid4
from ._regex import *
from .errors import InvalidInputError
from .validation import is_snake_case,
is_full_string, is_camel_case, is_integer, is_string,
DEFAULT_SEPERATOR

    """
    Checks if an object is a string.

    *Example:*

    >>> is_string('foo') # returns true
    >>> is_string(b'foo') # returns false

    :param obj: Object to test.
    :return: True if string, false otherwise.
    """

    """
    Checks if a string is formatted as camel case.

    A string is considered camel case when:

    - it's composed only by letters ([a-zA-Z]) and         
    optionally numbers ([0-9])
    - it contains both lowercase and uppercase letters
    - it does not start with a number

    *Examples:*

    >>> is_camel_case('MyString') # returns true
    >>> is_camel_case('mystring') # returns false

    :param input_string: String to test.
    :type input_string: str
    :return: True for a camel case string, false otherwise.
    """
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Figure 2: Illustration of a data instance in RepoExec. The target function signatures and their associated docstrings,
which describe the functionality of the functions, are shown in (6). The infile-imports and variable declarations are
represented by (5) and (4), respectively. The remaining components, (1), (2), and (3), represent the function and
class contexts. Specifically, (1) denotes the class or function signature, (2) may contain the description of the class,
and (3) represents the function body of the cross-file function.

are essential for assessing code functionality. How- ever, extracting test cases from repositories (Zhang



et al., 2023b; Li et al., 2024; Zhang et al., 2024) of-
ten relies on available functions and heuristic rules,
limiting adaptability and excluding data without
existing tests. For instance, Li et al. 2024 found
that over 99% of functions were discarded due to
the absence of suitable tests. We propose a dataset
collection pipeline to ensure that repositories can
build executable environments and that test cases
are automatically generated.

4.2 Functions and Dependencies Extraction
Function extraction: We extract functions and
their dependencies from repositories, considering
only those suitable for function-level code gener-
ation, akin to benchmarks like HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021). Us-
ing tree-sitter, we parse files into Abstract Syntax
Trees (AST) to extract functions, focusing on those
with comprehensive docstrings and excluding func-
tions used as entry points or that do not produce
verifiable outputs.

Dependencies extraction: We employ static
analysis to identify dependencies, excluding iden-
tifiers that are function parameters or typing ob-
jects. Each dependency name is then mapped to
its definition within the repository using a reposi-
tory graph and static analysis tools. We release our
tool pydepcall for community usage and provide
a brief description in Appendix H.

For example in Figure 2, for the function
camel_case_to_snake in manipulation.py, our
process identifies CAMEL_CASE_REPLACE_RE as an
in-file dependency and analyzes import statements
to track cross-file dependencies from errors.py
and validation.py. Dependencies are then
parsed and incorporated into the input prompt to
ensure comprehensive context for code generation.

4.3 Test case generation
To overcome the limitation of requiring available
tests in the repository for evaluation (as mentioned
in Section 4.1), we leverage large language models
(LLMs) to generate test cases automatically. Our
proposed approach ensures the correctness of cre-
ated test cases while also controlling and enhancing
test coverage. To execute and validate the gener-
ated test cases, it is necessary to configure each
repository to create an executable environment.
Follow Lemieux et al. 2023, we use pipreqs2 to
identify each project’s dependencies.

2https://github.com/bndr/pipreqs

In our test generation process, we conduct two
phases corresponding to Correctness Control and
Coverage Enhancement. After the test generation
process, we exclude samples with a line coverage
lower than 40%, as they are of insufficient quality
to accurately assess the correctness of the generated
code.

4.3.1 Correctness Control
In this stage, we present the procedure for generat-
ing initial test cases and ensure the tests’ correct-
ness. Specifically, we use CodeLlama-13b (Roziere
et al., 2023) and provide the model with the prompt
detailed in Appendix C. After generation, we ex-
tract the first 20 assertion statements to construct
the test cases. To ensure their correctness, we em-
ploy syntax and execution-based filtering methods
to exclude low-quality test cases.

Syntax-based filter: We filter out tests that
present syntax errors during parsing into AST. Ad-
ditionally, tests that do not invoke the function un-
der test are excluded. For instance, while the state-
ment “assert 1” may pass during execution, it is
meaningless and negatively impacts the evaluation.

Execution-based filter: We use pytest3 to ex-
ecute the generated tests. Tests are discarded if
their execution output displays an error, except for
AssertionError. If an assertion error is observed,
we try to fix it using the Assertion Fixer.

• Assertion Fixer: The fixer resolves this er-
ror by executing the test case with the target
function, extracting the output, and reassign-
ing it to the assertion statement. Given that
the return type can be complex in the reposi-
tory (e.g., a defined object), we use pickle4

to preserve the execution results.

• Multiple time execution: We witness some
flaky tests, which produce inconsistent out-
comes upon multiple executions due to the
inherent randomness in their implementation.
To eliminate these instances, we execute each
test 10 times to compare the outputs.

4.3.2 Coverage Enhancement
Weak unit tests may allow incorrect implementa-
tions to pass (Liu et al., 2023a). To address this,
we propose a strategy for enhancing test coverage

3https://github.com/pytest-dev/pytest
4https://docs.python.org/3/library/pickle.html

https://github.com/bndr/pipreqs
https://github.com/pytest-dev/pytest
https://docs.python.org/3/library/pickle.html


using LLMs. Given the complexity of this task,
requiring a strong understanding of code, we uti-
lize GPT-3.5 to improve the quality of test cases.
We provide GPT-3.5 with three prompts (see Ap-
pendix C) to handle challenging scenarios, includ-
ing edge and corner cases. The initial generated
tests serve as few-shot examples. We then ex-
tract the newly generated tests and ensure their
correctness using our methodology from Section
4.3.1. Table 1 shows a line coverage improvement
of about 4% after enhancement, reaching 96.25%.
The performance gap has also increased to over 5%
(Appendix B), indicating greater robustness in the
evaluation.

5 Data Characteristics

5.1 Data Formatting
Figure 2 illustrates the input data format used in
REPOEXEC. We retain import information and ap-
pend dependencies in the order presented in the
import statements. The target function signature
and natural language description are positioned at
the end of the input prompt. We propose three
prompt types with varying context lengths to test
the reasoning capability of CodeLLMs in leverag-
ing contexts for repo-level code generation:

• Full-size context: All contexts, including cross-
file and in-file contexts, are preserved to assess
the model’s ability to navigate and utilize the
complete information available in the repository.

• Medium-size context: Class and function bod-
ies are removed, while their signatures and doc-
strings are retained. This tests the model’s ability
to infer the functionality and usage of dependen-
cies based on their interfaces and documentation,
reducing the input context length.

• Small-size context: Only the signatures of
the dependencies are retained. This tests if
CodeLLMs can infer the usage of dependencies
in the target function given only the function sig-
natures without docstrings, representing the most
challenging case with minimal information.

Evaluating the model’s performance across these
context sizes provides insights into the trade-offs
between input context length and the model’s rea-
soning capabilities, helping to understand the opti-
mal balance between providing sufficient informa-
tion and minimizing input size for effective code
generation at the repository level.

Dataset #Samples Context TC LC (%)
CoNaLA (Yin et al., 2018) 500 ✗ ✗ -
CONCODE (Iyer et al., 2018) 2,000 ✗ ✗ -
HumanEval (Chen et al., 2021) 164 ✗ ✓, H 99.43
MBPP (Austin et al., 2021) 974 ✗ ✓, H 98.48
RepoCoder (Zhang et al., 2023b) 373 ✓ ✓, P -
CrossCodeEval (Ding et al., 2023) 2,665 ✓ ✗ -
CoCoMIC (Ding et al., 2024) 6,888 ✓ ✗ -
DevEval (Li et al., 2024) 1,874 ✓ ✓, P -
REPOEXEC 355 ✓ ✓, A 92.46

+ coverage-enhancement 96.25

Table 1: The comparison between popular code gener-
ation benchmarks and REPOEXEC. For test case, we
denote H: Human annotated, P: Pre-existing, A: Auto-
mated. TC: Test Cases. LC: Line Coverage

We follow Muennighoff et al. 2023 to define 2
types of prompt formats in our evaluation of RE-
POEXEC across LLMs: (1) BasePrompt, which
concatenates all contexts with the target functions
(Figure 2), and (2) InstructPrompt, which includes
specific instructions for the LLMs to follow, utiliz-
ing two variations as input formats (further details
and examples in Appendix D).

5.2 Dataset Stastistic

Comparison to Existing Benchmarks:
Table 1 compares the details of REPOEXEC

with those of existing code generation benchmarks.
Benchmarks that exclude execution-based evalua-
tion (Yin et al., 2018; Iyer et al., 2018; Ding et al.,
2023, 2024) may gather substantial amounts of
data; however, they are inadequate for assessing
the quality of the generated code. For HumanEval
and MBPP, the majority of problems involve stan-
dalone functions, which do not reflect real-world
scenarios. Besides, benchmarks that rely on human-
annotated and pre-existing test cases (Chen et al.,
2021; Austin et al., 2021; Zhang et al., 2023a; Li
et al., 2024) are challenging to scale and control the
test coverage. Finally, repository-context bench-
marks (RepoCoder (Zhang et al., 2023a), Cross-
CodeEval (Ding et al., 2023), CoCoMIC (Ding
et al., 2024), and DevEval (Li et al., 2024)) pri-
marily focus on evaluating retrieval modules. For
example, RepoCoder introduces a retriever using a
sparse bag-of-words model and provides the effec-
tiveness of this retriever. Similarly, CrossCodeEval
experiments and reports performance using various
retrievers such as BM25, UniXCoder, and OpenAI
ada. CoCoMic proposed CCFINDER to retrieve
cross-file context. DevEval is the closest to our
work; however, they compare the performance of
the generation model based on different given types



#No problem #No testcase Avg tokens
Cross-file Total Avg LC (%) Avg Prompt Solution

Full 22.8% 355 96.25 99.45 362.92 78.46
Medium - - - - 253.05 -
Small - - - - 179.66 -

Table 2: Dataset attributes with different levels of con-
texts (Full, Medium, Small). Cross-file refers to the
percentage of problems that involve cross-file depen-
dencies. Tree-sitter is used for tokenization. AVG LC:
Average Line Coverage.

of context, which can also align with the differ-
ent contexts provided by different retrievers. In
contrast, our approach emphasizes the generation
module’s ability to understand and utilize human-
provided dependency contexts.
Dataset attributes: Table 2 outlines the character-
istics of REPOEXEC, including the total number
of examples, the average number of test cases per
problem, and the number of tokens in prompts and
solutions.

6 Experiment

6.1 Evaluation Results
We evaluated 13 CodeLLMs on REPOEXEC and
presented the results (pass@1, pass@5, and DIR)
in Table 3. We use nucleus sampling with tem-
perature set to 0.2, top-p to 0.95, and 10 outputs
generated for all models. The results show that re-
taining the full context of dependencies yields the
best performance across all models. Surprisingly,
Small-size context proves to be more effective than
Medium-size context, which we attribute to the
context’s input format using BasePrompt, poten-
tially misleading the model into interpreting the
dependency functions as few-shot examples. Using
the Small-size context results in a fair decrease in
performance compared to the Full context while
effectively reducing the input length by half.

Codellama-34b-Python achieves the highest
pass@1 rate among the models considered, and
foundation models demonstrate greater effective-
ness compared to instruction-tuned models on our
dataset. However, our analysis reveals inherent
limitations in both types of models:

1. Instruction-tuned LLMs demonstrate a higher
capacity for utilizing given dependencies than
foundation LMs, sometimes enabling them to
address edge or corner cases that foundation
models have overlooked.

2. Despite the high DIR, instruction-tuning LMs

may not utilize dependencies correctly and fre-
quently produce overly complex code, leading
to incorrect solutions.

3. Pretrained LLMs produce code that functions
correctly but do not effectively reuse the pro-
vided dependencies, occasionally duplicating
the implementation from the given context. This
leads to redundancy and potentially creates tech-
nical debt or code smell issues (Maldonado and
Shihab, 2015; Sierra et al., 2019; Rasool and
Arshad, 2015; Santos et al., 2018).

These issues can lead to a low-quality code-
base, requiring substantial human effort for review-
ing and fixing, which may even exceed the effort
needed to write the code from scratch. Details and
examples are discussed further in Appendix E.

6.2 Generation with Multi-round Debugging

In this section, we examine the models’ self-
refinement capabilities in enhancing generation per-
formance. We provide the models with error output
logs and ask them to fix the errors. We experiment
with WizardCoder, GPT3.5, and CodeLlama-13b-
Python. The number of rounds to debug is set to
3 and the input template is presented in Appendix
F. In this experiment, we employ a greedy search
algorithm to generate only a single output.

Table 4 shows the improvement across three
rounds of debugging in various models. We ob-
serve that GPT-3.5 and WizardCoder demonstrate
a high capacity for debugging with improvement
of over 10% and 7% in pass@1, respectively, while
CodeLlama fails to take advantage of this process.
Additionally, the DIR has also shown a significant
improvement (over 7%) after three rounds of de-
bugging in these two instruction models (Figure
7). These findings indicate a promising approach
using self-refinement with debugging for code gen-
eration, which can enhance both the correctness
and the utilization of given dependencies.

6.3 Instruction-tuning with Code
Dependencies

While the multi-round debugging experiment has
demonstrated effectiveness in leveraging given de-
pendencies to provide correct solutions (Section
6.2), it requires a strong model to generate good
test cases and can be time-consuming due to the
repeated generation and execution of code and test
cases. To address these challenges, we propose



Model Full context Medium context Small context
pass@1 pass@5 DIR pass@1 pass@5 DIR pass@1 pass@5 DIR

BasePrompt

Pr
e-

m
od

el
s

CodeLlama-34b-Python (Roziere et al., 2023) 42.93 49.54 68.85 35.92 42.95 58.15 39.80 45.79 64.23
CodeLlama-13b-Python (Roziere et al., 2023) 38.65 43.24 62.26 32.96 38.33 56.38 35.66 42.41 62.67
StarCoder (Li et al., 2023) 28.08 33.95 58.75 22.54 31.83 50.74 25.54 31.45 56.67
StarCoder2-15b (Lozhkov et al., 2024) 27.77 32.60 60.57 18.70 23.28 39.28 23.27 29.78 53.49
Mixtral-8x7B-v0.1 (Jiang et al., 2024) 22.82 29.14 55.90 19.38 25.25 47.22 20.54 26.30 53.40
Phi-2 (Javaheripi et al., 2023) 19.04 24.56 48.22 14.54 20.34 40.85 14.82 20.69 44.54
Phi-1 (Gunasekar et al., 2023) 14.99 18.38 43.17 12.48 15.42 37.45 12.54 15.96 38.75

In
st

-m
od

el
s

WizardCoder-Python-13B-V1.0 (Luo et al., 2023) 34.31 40.06 62.90 30.99 36.75 59.50 32.54 38.34 64.67
Phind-CodeLlama-34B-v2 30.08 33.49 59.47 25.25 29.40 50.73 27.55 31.85 58.93
CodeLlama-13b-Instruct (Roziere et al., 2023) 28.56 32.67 57.09 26.25 30.72 49.48 26.73 33.50 54.53
GPT-3.5 27.27 37.69 63.59 23.15 33.94 52.79 22.59 33.63 55.22
DeepSeek-Coder-7b-Instruct (Guo et al., 2024) 25.18 29.91 58.50 20.23 26.02 45.76 22.20 27.74 56.69
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024) 23.41 28.71 59.83 19.04 24.83 52.75 20.45 25.84 58.17

InstructPrompt

In
st

-m
od

el
s WizardCoder-Python-13B-V1.0 26.20 30.68 67.32 24.56 30.25 67.54 24.70 29.56 68.34

CodeLlama-13b-Instruct 25.66 30.82 62.04 27.44 34.11 63.33 26.73 32.43 64.85
GPT-3.5 23.82 39.10 40.55 19.62 36.03 37.48 19.00 34.00 35.28
Mixtral-8x7B-Instruct-v0.1 18.11 23.04 67.73 18.54 23.12 69.66 15.38 20.61 68.86

Table 3: Pass@k (k= 1 and 5) and DIR results of various LLMs on REPOEXEC. Bold scores indicate the highest
values, while Underlined scores represent the second highest. Pre- and Inst- denote Pretrained and Instruction-tuned,
respectively.

Round GPT-3.5 WizardCoder CodeLlama-13b-Python
0 27.04 34.37 39.44
1 36.34 40.85 39.44
2 40.00 41.69 39.44
3 41.97 42.54 39.44

Table 4: Pass@1 scores of various models across three
rounds of debugging. Round 0 represents the initial
generation stage.

an instruction-tuning dataset for fine-tuning base
LLMs. We collected the 1,555 most-starred repos-
itories from 2018 onward and extracted functions
with their corresponding dependencies, following
the procedure outlined in Section 4.2. We obtained
154,818 functions, of which 57,746 samples in-
clude docstrings. From this set, we utilized 50K
samples with docstrings and applied instruction
prompts, while 80K samples adhered to the raw
code format (Full context). Recognizing the po-
tential of the Small context format, we allocated
the remaining 20K samples to follow this struc-
ture. We fine-tuned Phi-2, StarCoder, StarCoder2,
and CodeLlama-13b-Python models for 5 epochs
with LoRa (Hu et al., 2021) and used 10% of the
training data as the validation set to select the best
checkpoint.

Table 5 illustrates the efficacy of our training
data. All 4 models demonstrate improvements
in both Pass@1 and DIR after instruction tuning.
Specifically, there is a slight increase of around
1% in Pass@k for all models, while DIR shows
a significant improvement, reaching the highest

Model
Full context Small context

Pass@1 DIR Pass@1 DIR
phi-2 19.04 48.22 14.82 44.54
phi-2DepIT 20.20 61.66 20.31 70.30
StarCoder 28.08 58.67 25.49 56.67
StarCoderDepIT 29.43 69.80 28.73 71.48
StarCoder2 27.77 60.57 23.27 53.49
StarCoder2DepIT 28.45 69.76 27.27 73.98
CodeLlama 38.65 62.26 35.66 62.67
CodeLlamaDepIT 38.85 68.89 36.93 73.19

Table 5: Comparison of the performance of several
models on REPOEXEC after instruction tuning for de-
pendency calls (DepIT ) with their pre-trained versions.

scores (over 70%) compared to other models af-
ter tuning with our dataset. Notably, the perfor-
mance improves significantly with the use of small
context, achieving results comparable to those ob-
tained with full context. This offers the potential for
more efficient processing and reducing computa-
tional costs, allowing additional space to integrate
various other types of context. In summary, our
proposed instruction-tuning method can improve
the model’s ability to both reuse dependencies
and ensure the functional correctness of the out-
put. Although self-refinement through multi-round
debugging (Section 6.2) demonstrates greater ef-
fectiveness, instruction-tuning models only utilize
single-turn generation, making them more efficient
in practice. To facilitate open research in this do-
main, we will publicly release this dataset.



7 Conclusion

We introduce an evaluation approach for repository-
level code generation that rethinks the limitations
of previous methods by assessing not only func-
tional correctness but also dependency utilization
to ensure the quality of the generated code. By
presenting REPOEXEC, a novel Python code gen-
eration benchmark at the repository level with
executable capabilities, designed to evaluate the
alignment of generated code with developer intent
and its correctness. Our experiments reveal that
while pretrained language models (LLMs) excel
in functional correctness, instruction-tuned models
demonstrate proficiency in utilizing dependencies
and debugging. However, existing models struggle
to effectively reuse provided dependencies, poten-
tially leading to technical debt and code smell is-
sues. We provide a comprehensive evaluation of
how different LLMs leverage code dependencies
when generating code, and our findings show that
the size of the context significantly impacts the
final results.

We also introduce an instruction-tuning dataset
that enhances dependency invocation accuracy and
output correctness, even with limited context. This
approach allows for the integration of additional
context types and mitigates large token length con-
straints. Our contributions establish a foundation
for future research in code generation, providing
valuable evaluation techniques to drive the devel-
opment of more capable and reliable models.

8 Limitations

REPOEXEC is constructed for evaluating mod-
els based on existing works. However, this ap-
proach can potentially lead to data leakage, espe-
cially when modern models are trained on simi-
lar datasets. If the benchmark relies heavily on
known works, there’s a risk that the model may in-
advertently learn from specific patterns or features
present in those works, compromising its general-
ization ability. Despite this concern, experimental
results demonstrate that even modern models strug-
gle to handle the challenges posed by REPOEXEC,
indicating that the benchmark remains a valuable
tool for assessing model performance. Besides, sev-
eral models, including StarCoder2 and DeepSeek-
Coder, have been pretrained using repository-level
context. However, these models typically concate-
nate the contents of multiple files in a repository
without filtering out irrelevant information or con-
sidering the selection of dependencies. This helps
our dataset distinguish from the pretraining datasets
of these models, thereby helping to mitigate the
data leakage issue. However, employing new repos-
itories can help mitigate these phenomena.

In this work, we only consider one level of de-
pendency context, specifically the dependencies
directly called from the target function. While this
simplification facilitates manageable analysis and
model development, it may not fully capture the
valuable context necessary for leveraging models
effectively. However, incorporating deep depen-
dencies could significantly extend the input length,
posing challenges in managing long context in-
puts and potentially exceeding the maximum input
length. Our approach has demonstrated promising
outcomes with the small-size context version, cre-
ating opportunities for integrating additional input
context. Future research could explore incorpo-
rating multiple levels of dependencies, creating a
more comprehensive graph that includes transitive
dependencies, indirect calls, and broader contex-
tual information. By doing so, we could enhance
the model’s understanding of code interactions and
improve its ability to handle intricate software exe-
cution scenarios.
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Appendix
A Evaluation Metrics: Match-Based vs. Execution-Based

Several code generation benchmarks utilize match-based metrics like Edit similarity (ES), BLEU, and
CodeBLEU for evaluation (Ding et al., 2024; Shrivastava et al., 2023; Ding et al., 2023; Liao et al.,
2023; Yin et al., 2018; Iyer et al., 2018). These metrics are straightforward to apply and may exhibit
a strong correlation with execution metrics such as Pass@k. However, they cannot accurately measure
functional correctness. For instance, comparing two Python code snippets where the only difference is the
":" character could result in a good ES and BLEU score. Nevertheless, one snippet may contain a syntax
error, highlighting a limitation in these metrics for assessing true functionality.
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Figure 3: Correlation between Match-based metrics and Execution-based metric (Pass@1).

Figure 3 demonstrates that these metrics on average can achieve a strong correlation with Pass@k,
with CodeBLEU showing the highest correlation with Pearson score of 0.92. However, upon closer
inspection of the score distribution between correct and incorrect solutions (Figure 4), a considerable
overlap becomes apparent. This underscores the limitation of match-based metrics in accurately measuring
the correctness of code generation.
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Figure 4: Match-based metric distributions between Correct and Incorrect solutions

B Coverage Enhancement Effectiveness

Weak unit tests may inadvertently allow incorrect implementations to be determined as correct. Even with
human-written tests, the overlooked coverage rates lead to evaluations that are incomplete and potentially
misleading (Liu et al., 2023a). We present evidence supporting this argument, underscoring the limitations
of prior work on code generation within repository-level contexts. As depicted in Figure 5, enhancing the



number of test cases and coverage rates leads to a significant increase in the identification of incorrect
generated solutions, causing the Pass@1 score to drop markedly (by over 5%). We investigated several
solutions and found that most of the generated results did not fully utilize the given context (considered as
human-provided). Instead, they primarily focused on addressing the problem described in the given natural
language description. This indirectly overlooks the developer’s intentions, such as testing edge or corner
cases, highlighting the limitations in following and understanding the provided intent and dependency
context in these models. In summary, these findings underscore the effectiveness and importance of
maintaining high-quality test cases for evaluation purposes.
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Figure 5: Performance of various CodeLMs on REPOEXEC before (bf-) and after (af-) Coverage Enhancement
(CovEn) stage.

C Test case generation

Initial Test Generation Prompt

{function_under_test}
# test to check the correctness of "{ function_name }" function
assert



Coverage Enhancement Prompts

Prompt 1:
Here are some Python unit test functions and the focal function that they test:
# Test functions:
{existing_test_functions}
# Focal function:
{function_under_test}
Write more unit test functions that will increase the test coverage of the function under test.
——————————————————————————————————————–
Prompt 2:
Here are some Python unit test functions and the focal function that they test:
# Test functions:
{existing_test_functions}
# Focal function:
{function_under_test}
Write more unit test functions that will cover corner cases missed by the original and will increase
the test coverage of the function under test.
——————————————————————————————————————–
Prompt 3:
Here is a focal function under test:
{function_under_test}
This function under test can be tested with these Python unit test functions:
{existing_test_functions}
Here is an extended version of the unit test function that includes additional unit test cases that will
cover methods, edge cases, corner cases, and other features of the function under test that were
missed by the original unit test functions:



D Data Formating

D.1 BasePrompt

Example of Full Context

import base64
import random
import unicodedata
import zlib
from typing import Union
from uuid import uuid4
from ._regex import *
from .errors import InvalidInputError
from .validation import is_snake_case , is_full_string , is_camel_case , is_integer , is_string

CAMEL_CASE_REPLACE_RE = re.compile(r'([a-z]|[A-Z]+) (?=[A-Z])')

class InvalidInputError(TypeError):
"""
Custom error raised when received object is not a string as expected.
"""

def __init__(self , input_data: Any):
"""
:param input_data: Any received object
"""
type_name = type(input_data).__name__
msg = 'Expected "str", received "{}"'.format(type_name)
super().__init__(msg)

def is_string(obj: Any) -> bool:
"""
Checks if an object is a string.

*Example :*

>>> is_string('foo ') # returns true
>>> is_string(b'foo ') # returns false

:param obj: Object to test.
:return: True if string , false otherwise.
"""
return isinstance(obj , str)

def is_camel_case(input_string: Any) -> bool:
"""
Checks if a string is formatted as camel case.

A string is considered camel case when:

- it's composed only by letters ([a-zA-Z]) and optionally numbers ([0 -9])
- it contains both lowercase and uppercase letters
- it does not start with a number

*Examples :*

>>> is_camel_case('MyString ') # returns true
>>> is_camel_case('mystring ') # returns false

:param input_string: String to test.
:type input_string: str
:return: True for a camel case string , false otherwise.
"""
return is_full_string(input_string) and CAMEL_CASE_TEST_RE.match(input_string) is not None

def camel_case_to_snake(input_string , separator='_'):
"""
Convert a camel case string into a snake case one.
(The original string is returned if is not a valid camel case string)

*Example :*

>>> camel_case_to_snake('ThisIsACamelStringTest ') # returns 'this_is_a_camel_case_string_test '

:param input_string: String to convert.
:type input_string: str
:param separator: Sign to use as separator.
:type separator: str
:return: Converted string.
"""



Example of Medium Context

import base64
import random
import unicodedata
import zlib
from typing import Union
from uuid import uuid4
from ._regex import *
from .errors import InvalidInputError
from .validation import is_snake_case , is_full_string , is_camel_case , is_integer , is_string

CAMEL_CASE_REPLACE_RE = re.compile(r'([a-z]|[A-Z]+) (?=[A-Z])')

class InvalidInputError(TypeError):
"""
Custom error raised when received object is not a string as expected.
"""

def __init__(self , input_data: Any):
"""
:param input_data: Any received object
"""

def is_string(obj: Any) -> bool:
"""
Checks if an object is a string.

*Example :*

>>> is_string('foo ') # returns true
>>> is_string(b'foo ') # returns false

:param obj: Object to test.
:return: True if string , false otherwise.
"""

def is_camel_case(input_string: Any) -> bool:
"""
Checks if a string is formatted as camel case.

A string is considered camel case when:

- it's composed only by letters ([a-zA-Z]) and optionally numbers ([0 -9])
- it contains both lowercase and uppercase letters
- it does not start with a number

*Examples :*

>>> is_camel_case('MyString ') # returns true
>>> is_camel_case('mystring ') # returns false

:param input_string: String to test.
:type input_string: str
:return: True for a camel case string , false otherwise.
"""

def camel_case_to_snake(input_string , separator='_'):
"""
Convert a camel case string into a snake case one.
(The original string is returned if is not a valid camel case string)

*Example :*

>>> camel_case_to_snake('ThisIsACamelStringTest ') # returns 'this_is_a_camel_case_string_test '

:param input_string: String to convert.
:type input_string: str
:param separator: Sign to use as separator.
:type separator: str
:return: Converted string.
"""



Example of Small Context

import base64
import random
import unicodedata
import zlib
from typing import Union
from uuid import uuid4
from ._regex import *
from .errors import InvalidInputError
from .validation import is_snake_case , is_full_string , is_camel_case , is_integer , is_string

CAMEL_CASE_REPLACE_RE = re.compile(r'([a-z]|[A-Z]+) (?=[A-Z])')

class InvalidInputError(TypeError):

def __init__(self , input_data: Any):

def is_string(obj: Any) -> bool:

def is_camel_case(input_string: Any) -> bool:

def camel_case_to_snake(input_string , separator='_'):
"""
Convert a camel case string into a snake case one.
(The original string is returned if is not a valid camel case string)

*Example :*

>>> camel_case_to_snake('ThisIsACamelStringTest ') # returns 'this_is_a_camel_case_string_test '

:param input_string: String to convert.
:type input_string: str
:param separator: Sign to use as separator.
:type separator: str
:return: Converted string.
"""

D.2 InstructPrompt

Instruction Prompt Templates

Prompt 1:
### Instruction:

Write a Python function `{target_function_signature}` to solve the following
problem:

{target_function_docstring}

### Response:
{BasePrompt}

——————————————————————————————————————–
Prompt 2:
### Instruction:

{dependency_context}
The provided code snippet includes necessary dependencies for implementing the

`{target_function_name}` function. Write a Python function `{
target_function_signature}` to solve the following problem:

{target_function_docstring}

### Response:
{target_function_prompt}



Example of Prompt 1 for Small Context

### Instruction:

Write a Python function `camel_case_to_snake(input_string , separator='_')` to solve the following
problem:

"""
Convert a camel case string into a snake case one.
(The original string is returned if is not a valid camel case string)

*Example :*

>>> camel_case_to_snake('ThisIsACamelStringTest ') # returns 'this_is_a_camel_case_string_test '

:param input_string: String to convert.
:type input_string: str
:param separator: Sign to use as separator.
:type separator: str
:return: Converted string.
"""

### Response:
import base64
import random
import unicodedata
import zlib
from typing import Union
from uuid import uuid4
from ._regex import *
from .errors import InvalidInputError
from .validation import is_snake_case , is_full_string , is_camel_case , is_integer , is_string

CAMEL_CASE_REPLACE_RE = re.compile(r'([a-z]|[A-Z]+) (?=[A-Z]) ')

class InvalidInputError(TypeError):

def __init__(self , input_data: Any):

def is_string(obj: Any) -> bool:

def is_camel_case(input_string: Any) -> bool:

def camel_case_to_snake(input_string , separator='_'):
"""
Convert a camel case string into a snake case one.
(The original string is returned if is not a valid camel case string)

*Example :*

>>> camel_case_to_snake('ThisIsACamelStringTest ') # returns 'this_is_a_camel_case_string_test '

:param input_string: String to convert.
:type input_string: str
:param separator: Sign to use as separator.
:type separator: str
:return: Converted string.
"""



Example of Prompt 2 for Small Context

### Instruction

import base64
import random
import unicodedata
import zlib
from typing import Union
from uuid import uuid4
from ._regex import *
from .errors import InvalidInputError
from .validation import is_snake_case , is_full_string , is_camel_case , is_integer , is_string

CAMEL_CASE_REPLACE_RE = re.compile(r'([a-z]|[A-Z]+) (?=[A-Z]) ')

class InvalidInputError(TypeError):

def __init__(self , input_data: Any):

def is_string(obj: Any) -> bool:

def is_camel_case(input_string: Any) -> bool:

The provided code snippet includes necessary dependencies for implementing the `camel_case_to_snake `
function. Write a Python function `camel_case_to_snake(input_string , separator='_')` to solve

the following problem:
"""
Convert a camel case string into a snake case one.
(The original string is returned if is not a valid camel case string)

*Example :*

>>> camel_case_to_snake('ThisIsACamelStringTest ') # returns 'this_is_a_camel_case_string_test '

:param input_string: String to convert.
:type input_string: str
:param separator: Sign to use as separator.
:type separator: str
:return: Converted string.
"""

### Response:
def camel_case_to_snake(input_string , separator='_'):

"""
Convert a camel case string into a snake case one.
(The original string is returned if is not a valid camel case string)

*Example :*

>>> camel_case_to_snake('ThisIsACamelStringTest ') # returns 'this_is_a_camel_case_string_test '

:param input_string: String to convert.
:type input_string: str
:param separator: Sign to use as separator.
:type separator: str
:return: Converted string.
"""

E Studied LLMs: Supplemental results

In this section, we offer supplementary results from the evaluation of LLMs on REPOEXEC. Table 3
presents the Dependency Invocation Rate (DIR) for the experimented LLMs. When comparing models of
the same size, it is shown that instruction-tuned models more effectively follow human intent in utilizing
the provided dependencies with InstructPrompt. For example, WizardCoder outperforms CodeLlama by
5%, and the instruction-tuned version of Mixtral-8x7B shows a 10% improvement over its foundation
version. This highlights the strong capability of instruction-tuned models to follow the given context
effectively. Besides, using the Medium context leads to a significant decline in both Pass@k and DIR
using BasePrompt. This implies the generation of empty function bodies using this template.

Indeed, Figure 6 illustrates the proportion of generated functions that are empty for each LLM using
BasePrompt. The findings indicate that utilizing Medium context results in a substantial number of
empty functions. This may be due to the input format of the context when using BasePrompt, which can
mislead the model into interpreting dependency functions as few-shot examples. In the Medium context,
the function bodies of dependencies are removed, making their format identical to the target function
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Figure 6: Percentage of generated outputs that result in empty functions across various context types.

prompt. This similarity can mislead the LMs, resulting in empty solutions. Particularly, Starcoder-2
is heavily impacted by this issue, as over 31% of its generated results are empty functions, revealing a
significant weakness of the model. Meanwhile, small context effectively decreases the occurrence of
empty function generation by the model and, in certain instances, improves models’ ability in dependency
calls (e.g. CodeLlama-13b-Python, WizardCoder-Python-13B-V1.0, and Mixtral-8x7B-Instruct-v0.1 in
Table 3). We believe that the following reasons could contribute to this observation. Firstly, employing
small context reduces the input token count, preventing truncation when exceeding the maximum length
limit, thus allowing uninterrupted solution generation by the model. This reduced context enables
models to concentrate exclusively on dependency signatures, thereby enhancing the probability that
generated solutions effectively utilize these dependency token names. Moreover, function names hold
substantial semantic value by delineating the function’s purpose. Many studies have underscored that code
summarization heavily relies on extracting information from function names (Haldar and Hockenmaier,
2024; Mondal et al., 2023; Sontakke et al., 2022). Therefore, this concise representation of dependencies
has the potential to improve how models utilize dependencies in generating code.

Additionally, Table 6 presents examples that support our findings in Section 6.1. For instance, in the
first example, we observe that the instruction-tuned model can effectively utilize the given dependencies
to manage edge cases, whereas the pretrained model fails to do so. This supports our initial findings.
Meanwhile, the second and third examples demonstrate that pretrained models often reimplement or
devise workarounds instead of leveraging the available context. Besides, in the second example, the
instruction-tuned model correctly identifies the relevant case but fails to generate the correct solution.
This may suggest that hallucinations complicate the outputs generated by instruction-tuned models.

F Multi-round Debugging

We employ Multi-round debugging in code generation, which iteratively refines and improves the generated
code through multiple cycles of debugging. Following the execution of unit tests on the generated functions,
we extract the error log if the code fails to run. We employ the following prompt to utilize the model for
bug fixing. This process is iterated multiple times until either the correct code is achieved or the maximum
number of rounds is reached. Specifically, we set the maximum number of rounds to 3 and experimented
on three models WizardCoder, GPT-3.5 and CodeLlama-13b-Python.
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Figure 7: Improvement of instruction-tuning models on Pass@1 and DIR after 3-round debugging process.

Prompt for Debugging

{dependency_context}
# The provided code snippet includes necessary dependencies for implementing

the `{target_function_name}` function. Write a Python function `{
target_function_signature}` to solve the following problem:

{target_function_docstring}

# Here is the current solution.
{error_solution}

# When executing the below test case.
{failed_test_case}

# The provided python code solution fails the test with the following errors ,
please correct them.

{error_log}

# Please provide the modified code for me to review and provide feedback.
{target_function_prompt}

Table 4 shows the improvement across three rounds of debugging in various models. We observe that
GPT-3.5 and WizardCoder demonstrate a high capacity for debugging with improvement of over 10%
and 7% in Pass@1, respectively, while CodeLlama fails to take advantage of this process. Additionally,
the DIR has also shown a significant improvement (over 7%) after three rounds of debugging in these
two instruction models (Figure 7). These findings indicate a promising approach using self-refinement
with debugging for code generation, which can enhance both the correctness and the utilization of given
dependencies.

We also present data on the number of error types corrected in each round of WizardCoder, as illustrated
in Figure 8. We can see that AssertionError makes up the majority of errors across all rounds. This error
type indicates either incorrect outputs from the generated code or the presence of empty function bodies
(return None). However, by incorporating the test output guide, the model effectively addressed most
of these errors. Furthermore, fundamental issues like SyntaxError or AttributeError were promptly
rectified during the initial round.
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G Context length analysis

Long-context models can enhance the ability to comprehend and select relevant context from lengthy
inputs to effectively solve the required task. In this section, we examine how the context length supported
by each model affects their performance in REPOEXEC. Figure 9 demonstrates the relationship between
support context length, model size, and model family in relation to pass@k and DIR scores. The size of
the dots indicates the model size, while the color represents the model family.
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Figure 9: Correlation of context length to the model performance on REPOEXEC.

We observe that context length has a weak correlation with model performance on our dataset. In con-
trast, model size (scaling law) and model family, which encompass different training methods (pretraining
or instruction tuning), training datasets, and architectures, show a more significant impact. The weak
correlation with context length can be explained by our approach’s ability to already capture relevant
information (e.g. dependency) for each data sample, resulting in the pruning of context length for practical
usage (363 tokens on average shown in Table 2). Meanwhile, models that support long contexts are
often trained on data containing a mix of relevant and irrelevant information and are evaluated on their
ability to retrieve the correct context in a needle-in-a-haystack scenario (Roziere et al., 2023; Ivgi et al.,
2023; Liu et al., 2024). Therefore, models with varying context lengths might show a weak correlation to
performance in our scenario.

H Dependency extraction tool usage

We present pydepcall, a Python library designed to extract function dependencies from any repository.
We provide a brief overview of its usage in the following code snippet.



pydepcall usage

from pydepcall import Extractor

# If you want to extract all module files in the repository
reposrc = YOUR_LOCAL_PATH_OF_REPO
extractor = Extractor(reposrc)
output = extractor.extract ()

# If you want to extract a specific module file in the repository
reposrc = YOUR_LOCAL_PATH_OF_REPO
module_file = YOUR_LOCAL_PATH_OF_FILE_IN_REPO
extractor = Extractor(reposrc , module_file)
output = extractor.extract ()



Input Prompt & Solution Generation output

# Prompt:
import base64
import random
import unicodedata
...

class InvalidInputError(TypeError):
...

def is_string(obj: Any) -> bool:
...

def reverse(input_string: str) -> str:
"""
Returns the string with its chars reversed.

*Example :*

>>> reverse('hello ') # returns 'olleh '

:param input_string: String to revert.
:type input_string: str
:return: Reversed string.
"""

-------------------------------------------------------

# Solution:
def reverse(input_string: str) -> str:

"""
Returns the string with its chars reversed.

*Example :*

>>> reverse('hello ') # returns 'olleh '

:param input_string: String to revert.
:type input_string: str
:return: Reversed string.
"""
if not is_string(input_string):

raise InvalidInputError(input_string)

return input_string [::-1]

# Model type: Pretrained
# Passed: No
def reverse(input_string: str) -> str:

"""
Returns the string with its chars reversed.

*Example :*

>>> reverse('hello ') # returns 'olleh '

:param input_string: String to revert.
:type input_string: str
:return: Reversed string.
"""
return input_string [::-1]

-------------------------------------------------------

# Model type: Instruction -tuned
# Passed: Yes
def reverse(input_string: str) -> str:

"""
Returns the string with its chars reversed.

*Example :*

>>> reverse('hello ') # returns 'olleh '

:param input_string: String to revert.
:type input_string: str
:return: Reversed string.
"""
if not is_string(input_string):

raise InvalidInputError(input_string)
return input_string [::-1]



# Prompt:
import random
import luigi
import luigi.configuration
...

class hadoopcli(luigi.Config):
command = ...
version = ...

def get_configured_hadoop_version ():
"""
CDH4 (hadoop 2+) has a slightly different syntax
for interacting with hdfs
via the command line.

The default version is CDH4 , but one can override
this setting with "cdh3" or "apache1" in the
hadoop section of the config
in order to use the old syntax.
"""

-------------------------------------------------------

# Solution:
def get_configured_hadoop_version ():

"""
CDH4 (hadoop 2+) has a slightly different syntax
for interacting with hdfs
via the command line.

The default version is CDH4 , but one can override
this setting with "cdh3" or "apache1" in the
hadoop section of the config
in order to use the old syntax.
"""
return hadoopcli ().version.lower()

# Model type: Pretrained
# Passed: Yes
def get_configured_hdfs_client ():

"""
This is a helper that fetches the configuration
value for 'client ' in
the [hdfs] section. It will return the client that

retains backwards
compatibility when 'client ' isn't configured.
"""
return luigi.configuration.get_config ().get('hdfs'
, 'client ', 'hadoopcli ')

-------------------------------------------------------

# Model type: Instruction -tuned
# Passed: No
def get_configured_hadoop_version ():

"""
CDH4 (hadoop 2+) has a slightly different syntax
for interacting with hdfs
via the command line.

The default version is CDH4 , but one can override
this setting with "cdh3" or "apache1" in the
hadoop section of the config
in order to use the old syntax.
"""
hadoop_cli = hadoopcli ().command.split()
hadoop_version = hadoopcli ().version
if hadoop_version == "cdh3":

return hadoop_cli + ["fs"]
elif hadoop_version == "apache1":

return hadoop_cli + ["dfs"]
else:

return hadoop_cli



# Prompt:
import asyncio
import builtins
import collections
...

def is_future(x: Any) -> bool:
return isinstance(x, FUTURES)

def _create_future () -> Future:
future = Future () # type: Future
...

def maybe_future(x: Any) -> Future:
""" Converts ``x`` into a `.Future `.

If ``x`` is already a `.Future `, it is simply
returned; otherwise
it is wrapped in a new `.Future `. This is
suitable for use as
``result = yield gen.maybe_future(f())`` when you
don't know whether
``f()`` returns a `.Future ` or not.

.. deprecated :: 4.3
This function only handles ``Futures ``, not other
yieldable objects.
Instead of `maybe_future `, check for the non -
future result types
you expect (often just ``None ``), and ``yield ``
anything unknown.
"""

-------------------------------------------------------

# Solution:
def maybe_future(x: Any) -> Future:

""" Converts ``x`` into a `.Future `.

If ``x`` is already a `.Future `, it is simply
returned; otherwise
it is wrapped in a new `.Future `. This is
suitable for use as
``result = yield gen.maybe_future(f())`` when you
don't know whether
``f()`` returns a `.Future ` or not.

.. deprecated :: 4.3
This function only handles ``Futures ``, not

other yieldable objects.
Instead of `maybe_future `, check for the non -

future result types
you expect (often just ``None ``), and ``yield ``

anything unknown.
"""
if is_future(x):

return x
else:

fut = _create_future ()
fut.set_result(x)
return fut

# Model type: Pretrained
# Passed: Yes
def maybe_future(x: Any) -> Future:

""" Converts ``x`` into a `.Future `.

If ``x`` is already a `.Future `, it is simply
returned; otherwise
it is wrapped in a new `.Future `. This is
suitable for use as
``result = yield gen.maybe_future(f())`` when you
don't know whether
``f()`` returns a `.Future ` or not.

.. deprecated :: 4.3
This function only handles ``Futures ``, not other
yieldable objects.
Instead of `maybe_future `, check for the non -
future result types
you expect (often just ``None ``), and ``yield ``
anything unknown.
"""
if is_future(x):

return x
future = Future () # type: Future
future.set_result(x)
return future

-------------------------------------------------------

# Model type: Instruction -tuned
# Passed: Yes
def maybe_future(x: Any) -> Future:

""" Converts ``x`` into a `.Future `.

If ``x`` is already a `.Future `, it is simply
returned; otherwise
it is wrapped in a new `.Future `. This is
suitable for use as
``result = yield gen.maybe_future(f())`` when you
don't know whether
``f()`` returns a `.Future ` or not.

.. deprecated :: 4.3
This function only handles ``Futures ``, not other
yieldable objects.
Instead of `maybe_future `, check for the non -
future result types
you expect (often just ``None ``), and ``yield ``
anything unknown.
"""
if isinstance(x, Future):

return x
elif isawaitable(x):

return asyncio.ensure_future(x)
else:

future = Future ()
future.set_result(x)
return future

Table 6: Output samples of Pretrained and Instruction-tuned models.


