
2024-10-4

CodeMMLU: A Multi-Task Benchmark for
Assessing Code Understanding Capabilities of
CodeLLMs
Dung Nguyen Manh∗, Thang Phan Chau∗, Nam Le Hai∗†, Thong T. Doan∗, Nam V. Nguyen∗, Quang Pham∗♦,
Nghi D. Q. Bui∗
∗FPT Software AI Center, Viet Nam
†Hanoi University of Science and Technology
♦VNU-HCM - University of Science
dungnm31@fpt.com, thangpc13@fpt.com, namlh35@fpt.com, thongdt4@fpt.com, namnv78@fpt.com, quangp2808@gmail.com,
bdqnghi@gmail.com

Recent advancements in Code Large Language Models (CodeLLMs) have predominantly focused on
open-ended code generation tasks, often neglecting the critical aspect of code understanding and compre-
hension. To bridge this gap, we present CodeMMLU, a comprehensive multiple-choice question-answer
benchmark designed to evaluate the depth of software and code understanding in LLMs. CodeMMLU
includes over 10,000 questions sourced from diverse domains, encompassing tasks such as code analysis,
defect detection, and software engineering principles across multiple programming languages. Unlike
traditional benchmarks, CodeMMLU assesses models’ ability to reason about code rather than merely
generate it, providing deeper insights into their grasp of complex software concepts and systems. Our
extensive evaluation reveals that even state-of-the-art models face significant challenges with CodeMMLU,
highlighting deficiencies in comprehension beyond code generation. By underscoring the crucial rela-
tionship between code understanding and effective generation, CodeMMLU serves as a vital resource
for advancing AI-assisted software development, ultimately aiming to create more reliable and capable
coding assistants.

GitHub: https://github.com/FSoft-AI4Code/CodeMMLU

1. Introduction

Recent advancements in Code Large Language Models (CodeLLMs) have demonstrated impressive
capabilities across various software engineering (SE) tasks (Allal et al., 2023; Bui et al., 2023; Feng
et al., 2020; Guo et al., 2024; Li et al., 2023; Lozhkov et al., 2024b; Luo et al., 2023; Nijkamp et al.,
2022; Pinnaparaju et al., 2024; Roziere et al., 2023; To et al., 2023; Wang et al., 2021, 2023b;
Xu et al., 2022; Zheng et al., 2024c). However, existing benchmarks often fall short in providing
rigorous evaluations due to outdated methodologies and potential data leakage (Matton et al., 2024).
Moreover, practical applications of CodeLLMs reveal limitations such as bias and hallucination (Liu
et al., 2024a; Rahman & Kundu, 2024) that current benchmarks fail to adequately address.

The predominant focus of coding-related benchmarks has been on open-ended, free-form generation
tasks, such as code generation/code completion (Austin et al., 2021; Chen et al., 2021; Ding et al.,
2023; Hendrycks et al., 2021; Iyer et al., 2018; Lai et al., 2023; Lu et al., 2021; Zhuo et al., 2024)
and other SE tasks like program repair Ouyang et al. (2024); Xia et al. (2023) (Table 1). While
appealing, these benchmarks struggle to discern whether CodeLLMs truly understand code or merely
reproduce memorized training data (Carlini et al., 2022; Nasr et al., 2023). Additionally, the reliance
on test cases and executability for evaluation limits the quantity and diversity of these benchmarks
across domains, potentially leading to biased and limited generalizations. Recent efforts to improve
evaluation through free-form question answering (Li et al., 2024; Liu & Wan, 2021) have introduced

Corresponding author(s): Nghi D. Q. Bui (bdqnghi@gmail.com)

ar
X

iv
:2

41
0.

01
99

9v
1

 [
cs

.S
E

]
 2

 O
ct

 2
02

4

https://github.com/FSoft-AI4Code/CodeMMLU

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

API
&

Frameworks

PL
syntax

DBMS
&

SQL

Software
principles

Others Code
Completion

Fill in
the blank

Code
Repair

Defect
detection

20

40

60

80

Claude-3-sonnet@20240229
GPT-4o-2024-05-13

Meta-Llama-3-70B-Instruct
Mixtral-8x7B-Instruct-v0.1

DeepSeek-moe-16b-chat

Figure 1 | Summary performance of LLMs on the CodeMMLU benchmark. This radar chart presents
the evaluation results (accuracy %) of different models across various CodeMMLU tasks.

new challenges, often requiring less rigorous metrics or LLMs-as-a-judge approaches (Zheng et al.,
2023). However, LLMs-as-a-judge methods are susceptible to adversarial attacks (Raina et al., 2024),
raising concerns about the reliability of such evaluation pipelines for coding tasks.

To address these shortcomings, we introduce CodeMMLU, a novel benchmark designed to evaluate
CodeLLMs’ ability to understand and comprehend code through multi-choice question answering
(MCQA). This approach enables a deeper assessment of how CodeLLMs grasp coding concepts, moving
beyond mere generation capabilities. Inspired by the MMLU dataset (Hendrycks et al., 2020) from
natural language understanding, CodeMMLU offers a robust and easily evaluable methodology with
the following key features:

• Comprehensiveness: CodeMMLU comprises over 10,000 questions curated from diverse, high-
quality sources, mitigating potential bias from limited evaluation data.

• Diversity in task, domain, and language: The dataset covers a wide spectrum of software
knowledge, including general QA, code generation, defect detection, and code repair across various
domains and more than 10 programming languages.

CodeMMLU enables us to assess LLMs’ capabilities in coding and software tasks from a novel per-
spective, extending beyond traditional code generation and completion. Our analysis reveals several
notable findings: (1) previously unexplored bias issues in CodeLLMs, aligning with those observed in
natural language MCQA tasks; (2) GPT-4 consistently achieving the highest average performance
among closed-source models, while (3) the Meta-Llama family demonstrated the greatest accuracy
among open-source models; (4) scaling laws related to model size were partially observed within the
same model family but not across different families, suggesting the significant influence of pretraining

2

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

datasets, methodologies, and model architectures; (5) advanced prompting techniques, such as Chain-
of-Thought (CoT), consistently degraded performance, raising concerns about CodeLLMs’ reasoning
abilities on complex, step-by-step tasks; and (6) benchmarks like HumanEval, when converted from
open-ended code generation to MCQA format, show that LLMs perform worse on MCQA, raising
concerns about their real capability to understand and comprehend code. These findings highlight
the current shortcomings of CodeLLMs and the intricate relationship between model architecture,
training data quality, and evaluation methods in determining performance on software-related tasks.

In summary, our key contributions are:

1. We present the first MCQA benchmark for software and coding-related knowledge, addressing the
need for diverse evaluation scenarios in the code domain. CodeMMLU enables the evaluation of
LLMs’ alignment with human inference in the software knowledge domain, similar to advancements
in the NLP field.

2. CodeMMLU provides a thorough assessment of LLM capabilities, ensuring a substantial number
of samples and diversity across tasks, domains, and languages. This enables a more nuanced
understanding of an LLM’s strengths and weaknesses, facilitating the development of models
better aligned with the complexities and demands of the software domain.

3. Our experiments offer critical insights into LLM performance, highlighting the impact of factors
such as model size, model family, and prompting techniques. This provides essential information to
the community on effectively utilizing LLMs for specific tasks and domains in software engineering.

2. Related Work

Benchmarks for Code Generation & Understanding The development of Large Language Models
(LLMs) for code-related tasks has been accompanied by the creation of diverse benchmark datasets.
These benchmarks span a wide range of programming challenges, from basic algorithms to complex
software development scenarios. Algorithm-focused benchmarks include HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021), along with their extended versions HumanEval+, MultiPL,
and MBPP+ (Liu et al., 2024b). More advanced algorithmic tasks are represented by CodeContests
(Li et al., 2022) and LiveCodeBench (Jain et al., 2024), which draw from competitive programming
problems. Specialized benchmarks like DS-1000 (Lai et al., 2023) target data manipulation and
analysis tasks, while MathQA-Python (Austin et al., 2021) focuses on mathematical problem-solving
in Python. Repository-level benchmarks such as RepoBench (Liu et al., 2023), RepoEval (Zhang
et al., 2023), and SWE-Bench (Jimenez et al., 2023) simulate real-world software development
scenarios. Comprehensive evaluation frameworks like XCodeEval (Khan et al., 2023), CRUXEval (Gu
et al., 2024a), and CodeXGLUE (Lu et al., 2021) assess LLMs across multiple dimensions of software
development, providing a holistic view of model capabilities.

Programming Comprehension Modeling Research into modeling programmer behavior and cog-
nitive processes has been ongoing since the early days of software development (Shneiderman &
Mayer, 1979; Storey, 2005; Xia et al., 2018). Cognitive models aim to describe the mental structures
and processes involved in programming, encompassing knowledge, concepts, and techniques used
during comprehension and problem-solving. Shneiderman & Mayer (1979) introduced a multi-level
model of cognitive structures, distinguishing between semantic and syntactic knowledge. Semantic
knowledge includes programming concepts and techniques (e.g., dynamic programming, recursion,
sorting methods), while syntactic knowledge relates to programming language grammar (e.g., iter-
ation formats, conditional statements, library functions). To measure programmer comprehension
in terms of cognitive processes, Shneiderman & Mayer (1979) proposed five core programming

3

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

tasks: composition, comprehension, debugging, modification, and learning. This model architecture
addresses two crucial questions in programmer comprehension: (1) what knowledge is available to
programmers, and (2) what processes do programmers undergo during solution design.

Table 1 | Comparison between common code understanding benchmarks for LLMs in term
of coverage five foundation tasks of programming comprehension model. † and ★ denote the
benchmark with the free-flow generation and multiple-choice question answering format, respectively.

Benchmark
Programming Task

#Tasks Data sizeProgramming
Knowledge

Code
Composi-
tion

Code
Compre-
hension

Code
Modifica-
tion

Code
Debug-
ging

APPS† Hendrycks et al. (2021) ✓ 1 5
MBPP† Austin et al. (2021) ✓ 1 974
HumanEval† Chen et al. (2021) ✓ 1 164
CRUXEval† Gu et al. (2024b) ✓ 2 800
LiveCodeBench† Jain et al. (2024) ✓ ✓ ✓ 4 -
CodeApex★† Fu et al. (2023) ✓ ✓ ✓ 3 2.056

CodeMMLU★ ✓ ✓ ✓ ✓ ✓ 6 19.912

Multiple-Choice Question Answering Benchmarks Multiple Choice Questions (MCQs) have
emerged as a powerful tool for evaluating the capabilities of Large Language Models (LLMs) across
various domains. Recent trends in MCQ-based benchmarks focus on testing advanced reasoning,
domain-specific knowledge, and robustness in LLMs, particularly as their capabilities continue to
expand (Hendrycks et al., 2020; Lin et al., 2022; Talmor et al., 2019; Zellers et al., 2019). The benefits
of MCQs extend beyond enabling large-scale evaluation; they also provide highly reliable results.
Compared to open-ended assessment methods (Chiang et al., 2024) that heavily rely on LLM judges
or human annotation, MCQs enhance reliability by grounding the knowledge, problem context, and
defining possible answers. Despite their convenience, recent studies have revealed that LLMs display
significant sensitivity to the order of answer options in MCQs (Robinson et al., 2023; Wang et al.,
2023a). This finding underscores the need for appropriate debiasing methods in MCQ benchmarks to
address LLM selection bias (Pezeshkpour & Hruschka, 2024; Zheng et al., 2024b). By implementing
such methods, researchers can ensure more accurate and fair assessments of LLM performance.

3. CodeMMLU: Data Construction

The CodeMMLU benchmark is constructed to assess large language models’ (LLMs) comprehension of
programming tasks. We are inspired by programmer comprehension behavior models and integrate
multi-leveled cognitive structures and processes to measure the understandability of LLMs on software
problems (Shneiderman & Mayer, 1979). CodeMMLU is divided into two primary categories: (i)
knowledge-based test sets containing syntactic and semantic tasks, and (ii) real-world programming
problems. The overall CodeMMLU structure, as presented in Figure 2, includes distinct approaches
for data collection, filtering, and validation in both test sets.

3.1. Knowledge-based task creation

The knowledge-based subset covers a wide range of topics, from high-level software principles concepts
to low-level programming language grammars, targets to measuring the LLMs coding capability
and comprehensibleness of programming concepts. We collected programming-related MCQs from
high-quality platforms, namely GeeksforGeeks, W3Schools, and Sanfoundry (GeeksforGeeks, 2024;
SanFoundry, 2024; W3Schools, 2024).

4

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Object-oriented programming

Database Management & SQL

Algorithms & DS

System design

Real-world problem set

Knowledges set

Programming language syntax

APIs & Frameworks

CodeMMLU

Syntactic knowledge

Semantic knowledge

Code Completion

Fill-in-the-blank

Defect Detection

Code Repair

Others

Figure 2 | Overview of the CodeMMLU Structure. The CodeMMLU benchmark is divided into two
distinct subsets, each designed to evaluate different aspects of LLMs’ programming capability.

• Syntactic set. Focused on programming language grammar and structural correctness, such as
condition statement, format of iteration, common library usage, etc.

• Semantic set. Targeted more abstract programming concepts, such as algorithms, data structures,
object-oriented principles, etc.

Filtering Process. We manually classified the questions into subjects based on the topics of the
collected data. A deep learning-based filtering model was then applied to automatically eliminate
low-quality or irrelevant questions. For instance, duplicate or trivial questions that did not sufficiently
challenge the code comprehension abilities of LLMs were removed (Appendix A.2.1). The final
knowledge-based subset was refined using both manual and deep learning-based filtering to ensure
that each question met the desired quality standards, including clarity, lack of ambiguity, and difficulty
in evaluating both the semantic and syntactic understanding of LLMs. This filtering process resulted
in a knowledge-based subset containing approximately 6,000 syntactic questions and over 3,000
semantic questions, covering 52 topics classified into 5 main subjects (Table 2).

3.2. Task Construction

Our benchmark encompasses five distinct MCQ programming tasks designed to assess the foundational
abilities outlined in the cognitive process model of programmer comprehension: Code completion,
Code repair, Defect Detection, and Fill in the blank. These tasks cover the core capabilities that any
cognitive model of programmer behavior must address: composition, comprehension, debugging, and
modification.

Code Completion evaluates a model’s composition ability by requiring it to complete partially written
code based on provided requirements. We adapted HumanEval (Chen et al., 2021), originally designed
for code generation, into an MCQ format. From its 164 unique programming problems, we employed
Large Language Models (LLMs) to generate plausible but incorrect solutions as distractors. All options,
including correct solutions migrated from HumanEval and generated incorrect ones, were tested for
executability. Some incorrect solutions were designed to pass certain test cases but fail others, adding
complexity and challenging models to distinguish between correct and nearly-correct solutions based
on semantic and syntactic understanding.

Code Repair assesses a model’s debugging capability by requiring it to identify and fix errors in
provided code snippets. We built this task upon QuixBugs (Lin et al., 2017), which was originally

5

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Table 2 | Summary of CodeMMLU Subject Categories and Task Distribution.

Subject Topic Source Testsize

Sy
nt
ac
tic

kn
ow
le
dg
e

API & Frameworks usage
Jquery, Django, Pandas, Numpy, Scipy,

W
3S
ch
oo
ls
,G
ee
ks
4G
ee
ks
,S
an
fo
un
dr
y 740Azure, Git, AWS, svg, xml,

Bootstrap, NodeJS, AngularJS, React, Vue.

Programming language syntax C, C#, C++, Java, Javascript, PHP, Python,
R, Ruby, MatLab, HTML, CSS, TypeScript. 6,220

Se
m
an
tic
kn
ow
le
dg
e

DBMS & SQL DBMS, MySQL, PostgreSQL, SQL. 393
Data structure & Algorithm,

3,246

Object-oriented programming,
Compiler design,
Computer organization and Architecture,
Software Development & Engineering,

Software principles

System Design.

Others
Program accessibility, Computer networks,
Computer science, Cybersecurity, Linux,
Web technologies, AWS.

1,308

Re
al
-w
or
ld

ta
sk

Code completion HumanEval 163
Fill in the blank LeetCode 2,129
Code repair QuixBugs 76

Defect detection IBM CodeNet 6,006

designed for debugging algorithmic programs. We used a "diff" operation on buggy and corrected
versions in QuixBugs (Python and Java) to identify specific fixes, which served as correct solutions.
To create plausible distractors, we targeted components frequently involved in bugs (e.g., return
statements, loop conditions, if/else/switch expressions) and guided LLMs to generate alternative
fixes. These alternatives were designed to seem plausible but not fully resolve the bug. Each distractor
was verified for incorrectness, and all options were made executable to ensure that models needed a
deep understanding of the code to identify and apply the correct fix.

Defect Detection evaluates a model’s ability to identify and understand defects within code snippets,
focusing on both logical and syntactical errors. This task measures the comprehension and debugging
capabilities of LLMs by requiring them to predict the execution outcome of given code. It includes two
sub-tasks: detecting any defects/flaws in the provided code and comprehending the output of a certain
test sample. We derived this task set from IBM CodeNet (Puri et al., 2021), a large-scale benchmark
for algorithmic coding tasks. We focused on Python and Java subsets, collecting both accepted and
buggy versions of code. After filtering out duplicates, we created a diverse set of code samples. For
each snippet, we provide the correct execution result (golden answer) and three distracting options,
which could be one of several possible outcomes: (i) Compile Error, (ii) Time Limit Exceeded, (iii)
Memory Limit Exceeded, (iv) Internal Error, (v) Runtime Error, or (vi) The code does not contain any
issue.

Fill in the Blank evaluates a model’s code comprehension ability by requiring it to complete missing
parts of a code snippet, given documentation and an incomplete code sample. This task assesses
not only the model’s ability to fill gaps but also its understanding of both high-level programming
concepts and low-level grammatical structures. We collected approximately 2,000 coding problems
from LeetCode, covering solutions in three widely-used programming languages (Python, Java, C++).
From each problem’s solution, we randomly selected key components to be blanked out, focusing
on elements crucial to the program’s logic and flow, such as loop conditions, expression statements,
and conditional statements. To create plausible but incorrect options for the multiple-choice question

6

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

evaluate

GeeksForGeeks, W3school, etc

Crawling Filtering

Language models

Raw MCQs

(2) Filters by difficulty: Test
on set of high quality LLMs to
filter out low difficulty question.

(1) Deep-learning Filters:
LLMs judgement follow defined
categories.

CodeMMLU

Extracting

Synthesize
distractor

Question & Golden answer

Filtering

IBM CodeNet, QuixBugs,
LeetCode, etc

Code

Execution-based
Filter

Language models

Testcases

Prompt configs
(fewshot, CoT, etc)

Figure 3 | Overview of CodeMMLU data creation pipeline. The blue diagram describe the process
of collecting raw multiple-choice questions (MCQs) from open source internet for a knowledge testset.
Otherwise, the pipeline of real-world problem indicated in orange area.

(MCQ) format, we employed Large Language Models (LLMs) to generate alternative solutions for the
blanked-out components. These distractors were designed to be contextually relevant but incorrect,
adding complexity to the task. We executed all generated options to verify their incorrectness,
ensuring they do not solve the problem as intended. To further enhance the task’s difficulty, we
normalized all variable and function names within the code snippets, replacing original names with
generic placeholders (e.g., ’var1’, ’var2’, ’func1’). This normalization process reduces reliance on
specific naming conventions, forcing the model to focus purely on the code’s logic and structure rather
than context clues from variable or function names.

4. Experimental Results

4.1. Setup

Model selection. We evaluate CodeMMLU on 35 on popular open-source CodeLLMs, covering
a wide range of parameter sizes and architectures. The models were selected from 7 different
families, with parameters ranging from 1 billion to over 70 billion. Each family included base,
instructed, and chat versions: MetaLlama3.1/8B/70B (Dubey et al., 2024), MetaLlama3/8B/70B
(AI@Meta, 2024), CodeLlaMA/7B/13B/34B (Rozière et al., 2024), DeepSeek-ai/6.7B/7B/33B (Guo
et al., 2024), MistralAI/8x7B (Jiang et al., 2024), Qwen2/7B (qwe, 2024), CodeQwen1.5/7B Bai
et al. (2023), Yi/6B/9B/34B (AI et al., 2024), StarCoder2/7B/15B (Lozhkov et al., 2024a). In
addition to open-source models, we included 3 proprietary models from OpenAI and Claude to ensure
comprehensive coverage of the state-of-the-art in language modeling: GPT-3.5/GPT-4 (OpenAI et al.,
2024), Claude-3-opus/Claude-3.5-sonnet (The).

Answer extraction. CodeMMLU leverages the MCQ format for scalability and ease of evaluation.
In order to maintain this advantage, we only apply simple regex methods to extract the selection
answer (i.e. extract by directly answering or contains the pattern "answer is A|B|C|D”). The model
response is required to be parsable; otherwise, it will be marked as unanswered.

Prompting. We employed various prompt strategies to test model performance across different
scenarios, namely: Zeroshot, Fewshot, CoT, and CoT Fewshot. (Detaill in Appendix A.4.2)

7

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

PL syntax

API & Fra
meworks

DBMS & SQL

Software principles
Others

Code Completion

Fill i
n the middle

Code Repair

Defect D
etectio

n
0

20

40

60

80
Random score
Zero
Few
CoT

Figure 4 | Comparison of prompt configuration on GPT-4o. The experiment exposes the drawback
of Chain-of-Thought prompting technique in term of boosting performance on task that not require
logic or reasoning.

All experiments were conducted on a cluster of 8 A100 GPUs.

4.2. Key Insights

CodeMMLU revealed significant performance differences across models, as shown in Table 3. OpenAI’s
GPT-4o outperformed all models on CodeMMLU, demonstrating its quality across diverse tasks
(Figure 1). Notably, despite not being the latest model, the instructed version of Meta-Llama-3-70B
achieved the highest score among open-source models from 8 families. While LLMs perform well on
knowledge-based tasks, they struggle with real-world problems, particularly in defect detection tasks.

Figure 5 illustrates CodeMMLU’s capability to measure LLMs’ coding knowledge and skills across
a wide range of subjects. Our benchmark provides clear, distinct rankings that establish a higher
hierarchy of models compared to other code generation benchmarks. Interestingly, the results do not
strictly adhere to scaling laws (Kaplan et al., 2020), where larger parameter sizes typically outperform
smaller ones. This highlights the impact of data quality in the LLM pretraining process, as recently
released models often achieve comparable performance to larger models from previous versions.
CodeMMLU also indicates the importance of instruction tuning in improving model performance
on complex tasks. Models with instruction tuning substantially outperform their non-instructed
counterparts, exemplified by DeepSeek-Coder-33b surpassing its base model by approximately 29%.

Although Chain-of-Thought (CoT) prompting (Wei et al., 2023) is often expected to enhance per-
formance by eliciting deeper reasoning, our experiments reveal its inefficiency across almost all
knowledge tasks in the CodeMMLU benchmark. As demonstrated in Figure 4, the significant decline
in GPT-4o’s performance with CoT suggests that the additional complexity introduced by step-by-step
reasoning does not align well with knowledge-seeking tasks (Detail in Appendix A.1). In contrast,
few-shot prompting consistently emerges as the most reliable and effective strategy across various
tasks, offering a balanced approach without overwhelming the models.

Correlation Between Software Knowledge and Real-World Performance Our experiments re-
vealed a strong correlation between performance on knowledge-based tasks and real-world coding
challenges. Specifically, the Pearson correlation score r = 0.61 between model rankings on the
knowledge test set and their performance on real-world problems, derived from the accuracy of 43
LLMs across 10 model families, indicates a moderate alignment (Figure 6). This suggests that models

8

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Table 3 | Summary performance of LLM family on CodeMMLU. The evaluation results (accuracy
%) of different language models across CodeMMLU task.

Family Model name Size (B)
Knowledge test

Real-world tasks CodeMMLUSyntactic Semantic

Closed-source models

Anthropic Claude-3-sonnet@20240229 - 67.22 66.08 38.26 53.97

OpenAI
GPT-4o-2024-05-13 - 60.41 57.82 77.18 67
GPT-3.5-turbo-0613 - 61.68 84.88 58.52 51.7

Open-source models

Meta Llama

CodeLlama-34b-Instruct-hf 34 56.81 46.93 23.55 38.73
Meta-Llama-3-70B 70 63.38 86.02 63.1 48.98
Meta-Llama-3-70B-Instruct 70 64.9 87.59 67.68 62.45
Meta-Llama-3.1-70B 70 64.09 87.02 65.65 37.56
Meta-Llama-3.1-70B-Instruct 70 64.42 87.45 69.21 60

Mistral
Mistral-7B-Instruct-v0.3 7 54.42 51.25 31.85 43.33
Mixtral-8x7B-Instruct-v0.1 46.7 61.17 85.02 61.83 42.96
Codestral-22B-v0.1 22 60.34 82.17 58.52 47.6

Phi
Phi-3-medium-128k-instruct 14 58.54 54.56 37.89 48.03
Phi-3-mini-128k-instruct 3.8 53.01 74.18 54.2 37.93

Qwen
Qwen2-57B-A14B-Instruct 57 61.34 57.48 30.48 46.34
CodeQwen1.5-7B-Chat 7 49.66 67.62 46.06 49.82

Yi
Yi-1.5-34B-Chat 34 58.32 55.59 40.27 49.39
Yi-1.5-9B-Chat 9 55.64 75.46 60.05 47.23

Deep Seek

DeepSeek-coder-7b-instruct-v1.5 7 56.67 47.9 28.46 41.21
DeepSeek-coder-33b-instruct 33 53.65 74.89 52.16 36.6
DeepSeek-moe-16b-chat 16.4 31.74 41.94 41.48 31.01
DeepSeek-Coder-V2-Lite-Instruct 16 59.91 81.74 64.38 46.51

InternLM InternLM2-5-20b-chat 20 57.85 55.51 30.44 44.89

StarCoder2 StarCoder2-15b-instruct-v0.1 15 56.58 49.07 42.79 47.94

9

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Closed-source ≥70B ≥40B ≥10B

Figure 5 | CodeMMLU accuracy by task on LLMs. While knowledge tasks are following the scaling
law, real-world tasks offer more challenges to LLMs which indicate the performance of instruction
tuning and data quality when evaluating on CodeMMLU.

demonstrating a deeper understanding of software principles consistently excel in real-world coding
tasks, highlighting the importance of foundational knowledge for practical coding performance.

Selection bias in MCQs format We experimented evaluating with multiple answer order permuta-
tions (follow Zheng et al. (2024a)), the result displayed significant inconsistent behavior exhibited by
LLMs when swapping golden answer positions. As presented in Table 8, the model’s performance
changes dramatically in each answer order configuration, which is based on the correct answer’s
position. The LLMs accuracy fluctuates between different permutations (i.e. DeepSeek-Coder-34B
Δ𝜎 = 36.66), demonstrating how sensitive it can be to the structure and order of answers (Figure 7).

Disagreement between Open-ended generation benchmark and MCQ Code completion A
notable finding from our experiments is the discrepancy in model performance between open-ended
benchmarks and multiple-choice formats. Specifically, when comparing the original HumanEval
questions with their multiple-choice equivalents in our CodeMMLU code completion set, we found
that models that perform well on HumanEval do not consistently replicate their success in CodeMMLU.
For instance, when evaluating identical questions across both formats, the number of cases where
models answered both correctly or both incorrectly was unexpectedly low. The correlation scores in
Figure 8 further illustrate the weak alignment of success between these two benchmarks, revealing
that performance in open-ended tasks does not reliably predict performance in multiple-choice coding
tasks.

This lack of alignment suggests that traditional benchmarks might overestimate a model’s under-
standing by focusing too narrowly on code generation. The MCQ format in CodeMMLU forces models
to engage with more complex reasoning and contextual understanding, exposing weaknesses that
remain hidden in generative tasks.

5. Conclusions

In this work, we introduced CodeMMLU, a comprehensive and scalable benchmark designed to
evaluate large language models’ (LLMs) capabilities across a wide range of software knowledge

10

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

20 40 60
Knowledge-Task

0

20

40

60

80

Re
al

-Ta
sk

Figure 6 | Correlation between knowl-
edge test set and real-world problems.
Experiments on 10 LLM families show a
clear alignment between models with a
strong understanding of software knowledge
and their performance on diverse problem-
solving tasks in the CodeMMLU real-world
task set.

Figure 7 | Task-Specific Accuracy and Performance
Fluctuations Across Answer Options Models exhibit
marked fluctuations in accuracy depending on the
position of the correct answer in Code Completion in
CodeMMLU. Revealing the bias and inconsistencies in
related coding multiple-choice question (MCQ) task
and how sensitive LLMs are to answer ordering.

and real-world programming tasks. Our experiments highlighted the benchmark’s key advantages,
including its cost-effectiveness, scalability, and extensive task coverage. The insights gained revealed
a strong correlation between software knowledge and real-world task performance, demonstrating
that models with deeper comprehension outperform those relying purely on probabilistic generation.

Additionally, CodeMMLU provides more accurate and detailed rankings of LLMs, particularly in
open-source models, where significant reordering of performance was observed. The benchmark
also revealed inconsistencies in model comprehension when compared to traditional evaluations
like HumanEval, emphasizing the need for more robust benchmarks that go beyond simple code
generation.

Limitations, and Future Work

Limitations. While CodeMMLU offers a broad and diverse evaluation, there are some limitations.
First, the MCQ format, though effective at testing comprehension, might not fully capture creative
aspects of code generation or models’ ability to optimize code. Second, the current scope of languages
and tasks could be expanded to include more specialized domains or additional programming
languages to better assess models’ versatility.

Future Work. Looking forward, we plan to release CodeMMLU as an open-source benchmark for
the research community. This release will include the full dataset, along with tools for automated
evaluation, allowing for widespread adoption and further improvements. Future updates will focus
on adding more complex tasks, refining the balance between real-world scenarios and theoretical
knowledge, and incorporating user feedback to make the benchmark even more robust for next-
generation LLMs.

11

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Table 4 | Performance Comparison between HumanEval and MCQ Code Completion Tasks. The
performance fluctuation highlights the selection biases observed when the correct (golden) answer is
moved to positions A, B, C, or D.

Models HumanEval
Code Completion MCQ

A B C D

CodeLlama-7B-Python 40.48
0.00 90.24 14.02 0.61
(-40.48) (+49.76) (-26.46) (-39.87)

CodeLlama-7B-Instruct 45.65 3.66 1.22 93.90 15.85
(-41.99) (-44.43) (+48.25) (-29.80)

CodeLlama-13B-Python 42.89 0.61 54.88 70.12 12.20
(-42.28) (+11.99) (+27.23) (-30.69)

CodeLlama-13B-Instruct 50.6 2.44 68.29 72.56 29.88
(-48.16) (+17.69) (+21.96) (-20.72)

CodeLlama-34B-Python 45.11 0.61 77.44 70.73 49.39
(-44.50) (+32.33) (+25.62) 4.28

CodeLlama-34B-Instruct 50.79
9.15 84.76 65.24 46.34
(-41.64) (+33.97) (+14.45) (-4.45)

Deepseek-Coder-7B-base-v1.5 43.2
40.85 74.39 64.02 39.02
(-2.35) (+31.19) (+20.82) (-4.18)

DeepSeek-Coder-33B-base 56.1 1.22 82.32 75.00 56.10
(-54.88) (+26.22) (+18.90) (0.00)

Phind-CodeLLama-34B-v2 71.95 6.10 90.85 75.00 46.34
(-65.85) (+18.90) (+3.05) (-25.61)

Mixtral-8x7B-Instruct-v0.1 40.2
22.56 74.39 71.95 63.41
(-17.64) (+34.19) (+31.75) (+23.21)

References

The claude 3 model family: Opus, sonnet, haiku. URL https://api.semanticscholar.org/CorpusID:
268232499.

Qwen2 technical report. 2024.

01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin
Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu,
Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and
Zonghong Dai. Yi: Open foundation models by 01.ai, 2024. URL https://arxiv.org/abs/2403.
04652.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/
MODEL_CARD.md.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t reach
for the stars! arXiv preprint arXiv:2301.03988, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang

12

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2403.04652
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

False True

Code completion

Fa
lse

Tr
ue

Hu
m

an
Ev

al
52 26

47 39

CodeQwen1.5-7B (corrcoef=0.1227)
False True

Code completion

Fa
lse

Tr
ue

Hu
m

an
Ev

al

32 39

33 60

Meta-Llama-3-8B-Instruct (corrcoef=0.0971)
False True

Code completion

Fa
lse

Tr
ue

Hu
m

an
Ev

al

60 5

85 14

Meta-Llama-3.1-8B-Instruct (corrcoef=0.0986)

False True

Code completion

Fa
lse

Tr
ue

Hu
m

an
Ev

al

33 62

17 52

Qwen2-7B-Instruct (corrcoef=0.1083)
False True

Code completion

Fa
lse

Tr
ue

Hu
m

an
Ev

al

74 28

37 25

starcoder2-7b (corrcoef=0.1335)

10

20

30

40

50

60

70

80

Figure 8 | Comparison of CodeMMLU’s code completion task and HumanEval. Many LLMs
show a performance discrepancy between the two tasks, where models that successfully passed the
HumanEval code generation test often failed to select the correct answer in the multiple-choice (MCQ)
format, or vice versa, for the same question.

Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan,
Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang,
Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei
Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan
Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Nghi DQ Bui, Hung Le, Yue Wang, Junnan Li, Akhilesh Deepak Gotmare, and Steven CH Hoi. Codetf:
One-stop transformer library for state-of-the-art code llm. arXiv preprint arXiv:2306.00029, 2023.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. arXiv preprint arXiv:2202.07646,
2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An
open platform for evaluating llms by human preference, 2024. URL https://arxiv.org/abs/2403.
04132.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Crosscodeeval: A
diverse and multilingual benchmark for cross-file code completion. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

13

https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan
Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer
Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe,
Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield,
Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu
Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan,
Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng,
Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra,
Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar
Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher,
Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan,
Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan
Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng
Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen
Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen,
Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin
Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie
Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,
Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang
Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer,
Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban

14

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory Sizov,
Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor
Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli,
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy
Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon
Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U,
Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso,
Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko,
Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike
Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini
Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas
Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari,
Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay,
Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max,
Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy
Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei
Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang,
Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian,
Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao.
The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua Du, Weiming Zhang, Longteng Fan, Jiayi Lei,
Renting Rui, Jianghao Lin, Yuchen Fang, Yifan Liu, Jingkuan Wang, Siyuan Qi, Kangning Zhang,
Weinan Zhang, and Yong Yu. Codeapex: A bilingual programming evaluation benchmark for
large language models. ArXiv, abs/2309.01940, 2023. URL https://api.semanticscholar.org/
CorpusID:261530384.

GeeksforGeeks. GeeksforGeeks | Quiz Hub: Test Your Knowledge, 2024. URL https://www.
geeksforgeeks.org/quizzes/.

15

https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:261530384
https://api.semanticscholar.org/CorpusID:261530384
https://www.geeksforgeeks.org/quizzes/
https://www.geeksforgeeks.org/quizzes/

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024a.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution, 2024b. URL
https://arxiv.org/abs/2401.03065.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise
of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300,
2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code
in programmatic context. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 1643–1652, 2018.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux,
Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile
Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts,
2024. URL https://arxiv.org/abs/2401.04088.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020.
URL https://arxiv.org/abs/2001.08361.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code understanding,
generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR, 2023.

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang, Tao Xie,
and Hongxia Yang. Inficoder-eval: Systematically evaluating the question-answering capabilities of
code large language models. arXiv preprint arXiv:2404.07940, 2024.

16

https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2001.08361

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey challenge. Proceedings Companion of the 2017
ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity, 2017. URL https://api.semanticscholar.org/CorpusID:7158771.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Chenxiao Liu and Xiaojun Wan. Codeqa: A question answering dataset for source code comprehension.
arXiv preprint arXiv:2109.08365, 2021.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, and Li Zhang. Exploring and
evaluating hallucinations in llm-powered code generation. arXiv preprint arXiv:2404.00971, 2024a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt
really correct? rigorous evaluation of large language models for code generation. Advances in
Neural Information Processing Systems, 36, 2024b.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li,
Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae
Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati,
Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc
Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet,
Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh,
Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha,
Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024a.
URL https://arxiv.org/abs/2402.19173.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173, 2024b.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark dataset for
code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

17

https://api.semanticscholar.org/CorpusID:7158771
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2402.19173

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Alexandre Matton, Tom Sherborne, Dennis Aumiller, Elena Tommasone, Milad Alizadeh, Jingyi He,
Raymond Ma, Maxime Voisin, Ellen Gilsenan-McMahon, and Matthias Gallé. On leakage of code
generation evaluation datasets. arXiv preprint arXiv:2407.07565, 2024.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ippolito,
Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable extraction
of training data from (production) language models. arXiv preprint arXiv:2311.17035, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. Codegen: An open large language model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474, 2022.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson,
Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen,
Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings,
Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville,
Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou,
David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo
Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes,
Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu,
Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang,
Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali
Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel
Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna
Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang
Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas
Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle,
Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea

18

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave
Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu,
Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan
Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William
Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Yicheng Ouyang, Jun Yang, and Lingming Zhang. Benchmarking automated program repair: An
extensive study on both real-world and artificial bugs. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 440–452, 2024.

Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of options
in multiple-choice questions. pp. 2006–2017, 01 2024. doi: 10.18653/v1/2024.findings-naacl.130.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James Baicoianu, Ashish Datta,
Maksym Zhuravinskyi, Dakota Mahan, Marco Bellagente, Carlos Riquelme, et al. Stable code
technical report. arXiv preprint arXiv:2404.01226, 2024.

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian T
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Veronika Thost, Luca Buratti,
Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. Codenet: A large-
scale ai for code dataset for learning a diversity of coding tasks. In J. Vanschoren and S. Yeung (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1,
2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/
file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf.

Mirza Masfiqur Rahman and Ashish Kundu. Code hallucination. arXiv preprint arXiv:2407.04831,
2024.

Vyas Raina, Adian Liusie, and Mark Gales. Is llm-as-a-judge robust? investigating universal adversarial
attacks on zero-shot llm assessment. arXiv preprint arXiv:2402.14016, 2024.

Joshua Robinson, Christopher Michael Rytting, and David Wingate. Leveraging large language models
for multiple choice question answering, 2023. URL https://arxiv.org/abs/2210.12353.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom,
and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024. URL https://arxiv.
org/abs/2308.12950.

SanFoundry. SanFoundry, 2024. URL https://www.sanfoundry.com/.

Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in programmer behavior: A
model and experimental results. International Journal of Parallel Programming, 8:219–238, 06
1979. doi: 10.1007/BF00977789.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-thought
helps mainly on math and symbolic reasoning, 2024. URL https://arxiv.org/abs/2409.12183.

19

https://arxiv.org/abs/2303.08774
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://arxiv.org/abs/2210.12353
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://www.sanfoundry.com/
https://arxiv.org/abs/2409.12183

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

M.-A. Storey. Theories, methods and tools in program comprehension: past, present and future.
In 13th International Workshop on Program Comprehension (IWPC’05), pp. 181–191, 2005. doi:
10.1109/WPC.2005.38.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/abs/
1811.00937.

Hung Quoc To, Nghi DQ Bui, Jin Guo, and Tien N Nguyen. Better language models of code through
self-improvement. arXiv preprint arXiv:2304.01228, 2023.

W3Schools. W3Schools.com, 2024. URL https://www.w3schools.com/quiztest/.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu,
and Zhifang Sui. Large language models are not fair evaluators, 2023a. URL https://arxiv.org/
abs/2305.17926.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859,
2021.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era of
large pre-trained language models. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 1482–1494. IEEE, 2023.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shanping Li. Measuring
program comprehension: A large-scale field study with professionals. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 584–584, 2018. doi: 10.1145/3180155.
3182538.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming, pp. 1–10, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
generation. arXiv preprint arXiv:2303.12570, 2023.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are
not robust multiple choice selectors. In International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=shr9PXz7T0.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models are
not robust multiple choice selectors, 2024b. URL https://arxiv.org/abs/2309.03882.

20

https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://www.w3schools.com/quiztest/
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1905.07830
https://openreview.net/forum?id=shr9PXz7T0
https://arxiv.org/abs/2309.03882

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv
preprint arXiv:2402.14658, 2024c.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

21

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

A. Appendix

A. Appendix

A.1. Prompt comparison

We experimented on 48 LLM models from over 12 family with 3 different settings, namely: Zero-shot,
Few-shot and Chain-of-Thought (CoT). The overall trend can be demonstrated through GPT-4o and
MetaLlama 3 70B (Fig. 9), the SOTA models in closed-source and open-source families. The LLMs
show a significant decrease in performance in the Chain-of-Thought prompt setting compare to
few-shot and zero-shot settings. As concluded in Sprague et al. (2024) final result, CoT bring extra
"thinking" step into the original task which only effective on task involved math or logic while the
result on benchmark like MMLU are identical with and without CoT prompting. The decreasing that
happened mostly in CodeLLM knowledge test set align with Sprague et al. (2024) conclusion of the
inefficient of CoT for non-reasoning task.

Zero Few CoT
Type

28

30

32

34

36

38

40

42

Pe
rfo

rm
an

ce

PL syntax

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

40

50

60

70

80

90

Pe
rfo

rm
an

ce

API & Frameworks

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

30

35

40

45

50

55

60

65

Pe
rfo

rm
an

ce

DBMS & SQL

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

35

40

45

50

55

60

Pe
rfo

rm
an

ce

Software principles

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

35

40

45

50

55

60

Pe
rfo

rm
an

ce

Others

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

30

40

50

60

70

80

Pe
rfo

rm
an

ce

Code Completion
GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

50

60

70

80

90

Pe
rfo

rm
an

ce

Fill in the middle
GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

40

50

60

70

80

Pe
rfo

rm
an

ce

Code Repair

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

0

10

20

30

40

50

60

Pe
rfo

rm
an

ce

Defect Detection

GPT-4o
Meta-Llama-3-70B

Figure 9 | Comparison between GPT4o and Meta Llama-3 70B on various prompt settings. We
experiment with zero-shot, 1-shot, and CoT prompt configuration, where the result indicates the
ineffectiveness of CoT in boosting the models’ performance. Comparing to zeroshot config, 1-shot
prompt slightly increase the performance in knowledge tasks but falls shorter in real tasks.

22

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

A.2. Data Cleaning and Filtering

A.2.1. Multiple-Choice Question (MCQ) Answering Filtering

The process of cleaning and filtering the MCQ data involved the following steps:

• Incomplete Data: Filtering instance with incomplete problem statement, code snippet, or
solution.

• Non-textual Content: Filtering question containing images, videos, or other media. Yield
dataset focused exclusively on text-based coding tasks.

• Irrelevant or Redundant Content: Any content not directly contributing to the assessment of
programming knowledge or coding skills, such as off-topic questions or repeated instances, was
filtered out.

A.2.2. Data quality Filtering

We maintain the integrity of the knowledge set and ensure it provides a reliable measure of LLM
performance in coding and programming, we employed a rigorous data validation process, integrated
deep-learning based filters, aimed at enhancing both the robustness and comprehensiveness of the
dataset:

• Common Error Identification: We applied LLMs for scanning the dataset for common errors,
such as ambiguous problem statements, incorrect solutions, or poorly constructed questions.
Any instances that could lead to misleading assessments or misinterpretations were corrected
or discarded.

• Difficulty Level Assessment: We targeted to remove all tasks that are deemed too easy for
LLMs, as they do not significantly contribute to testing advanced problem-solving abilities. This
result are achieved by benchmarking multiple LLMs to identify instances commonly answered
correctly. Follow by a manual validated step to ensure their appropriateness for the benchmark.

Any data that failed to meet our stringent quality standards—whether due to errors, irrelevance, or
inadequate difficulty—was filtered out, resulting in a high-quality, well-curated dataset tailored for
evaluating LLMs on real-world coding challenges.

A.3. CodeMMLU Visualization

General knowledge MCQ example:

The following are multiple-choice questions (with answers) about debugging a programming
problem.
Question: Suppose we have an O(n) time algorithm that finds the median of an unsorted array.
Now consider a QuickSort implementation where we first find the median using the above
algorithm, then use the median as a pivot. What will be the worst-case time complexity of this
modified QuickSort?
(A) 𝑂(𝑛2 log 𝑛)
(B) 𝑂(𝑛2)
(C) 𝑂(𝑛 log 𝑛 log 𝑛)
(D) 𝑂(𝑛 log 𝑛)

Code Completion example:

23

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

The following are multiple-choice questions (with answers) about programming problems.
Question: Which solution below is the most likely to complete the following code to achieve
the desired goal?

from typing import List

def has_close_elements(numbers: List[float], threshold: float) −> bool:
""" Check if in given list of numbers , are any two numbers closer to each

↩→ other than given threshold.
>>> has_close_elements ([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements ([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

(A)
for i in range(len(numbers)): # Change range to len(numbers)

for j in range(i + 1, len(numbers)):
if abs(numbers[i] − numbers[j]) < threshold:

return True
return False

(B)
return any(abs(a − b) < threshold for a, b \

in zip(numbers , numbers [1:]))

(C)
for i in range(len(numbers) − 1):

for j in range(i + 1, len(numbers)):
if abs(numbers[i] − numbers[j]) > threshold:

return False
return True

(D)
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem − elem2)
if distance < threshold:

return True

return False

Answer:

Fill in the blank example:

The following are multiple-choice questions (with answers) about a programming problem
with incomplete solution.
Problem statement: You are given an array of intervals, where intervals[i] = [starti, endi]
and each starti is unique. The right interval for an interval i is an interval j such that startj >=
endi and startj is minimized. Note that i may equal j. Return an array of right interval indices
for each interval i. If no right interval exists for interval i, then put -1 at index i.
Incomplete Solution:
def find_right_interval(intervals):

24

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

n = len(intervals)
res = [−1] ∗ n
for i in range(n):

intervals[i]. append(i)

def binary_search(ele):
left , right = 0, n−1
ans = float(’inf’)
while left <= right:

mid = (left + right) // 2
if intervals[mid][0] >= ele:

ans = min(ans , mid)
right = mid − 1

else:
left = mid + 1

return ans

intervals.sort()
for i in intervals:

if val != float(’inf’):

res[i[2]] = intervals[val][2]
return res

Question: The provided solution is missing a part, which option below is the most likely to
complete the solution and achieve the desired goal?
(A)

val = binary_search(i[1])

(B)
if val != float(’inf’):

(C)
val = binary_search(i[1])

(D)
if val != float(’inf’):

res[i[2]] = intervals[val][2]

Answer:

Code Repair example:

The following are multiple-choice questions (with answers) about debugging a programming
problem.
Question: The following code snippet is producing incorrect results; Which solution below
correctly identifies the bug and repairs it to achieve the desired goal?

1 import java.util .∗;
2 public class DETECT_CYCLE {
3 public static boolean detect_cycle(Node node) {
4 Node hare = node;
5 Node tortoise = node;
6 while (true) {
7 if (hare.getSuccessor () == null)
8 return false;
9 tortoise = tortoise.getSuccessor ();

10 hare = hare.getSuccessor ().getSuccessor ();
11 if (hare == tortoise)
12 return true;
13 }
14 }

25

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

15 }

(A) Modify line 6:
for (; ;) {

(B) Modify line 7:
if (null==hare ||hare.getSuccessor () == null)

(C) Modify line 12:
return hare.getSuccessor () != null && hare == tortoise;

(D) Modify line 11:
if (Objects.equals(hare , tortoise))

Defect detection example:

The following are multiple-choice questions (with answers) about programming problem.
Question: Given a code snippet below, which behavior most likely to occur when running the
solution?

import java.util .∗;
public class Main {

public static void main(string [] args) {
Scanner sc = new Scanner(System.in);
int A = sc.nextInt ();
int B = sc.nextInt ();
int T = sc.nextInt ();
int S = T/A System.out.println(s∗b);

}
}

(A) Memory Limit Exceeded
(B) Time Limit Exceeded
(C) Compilation Error
(D) The code not contain any issue

A.4. Prompt collection

A.4.1. Data creation prompt

Prompt used for synthesis distractor for real-world task:

Code Repair distractor creation prompts:

26

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

After extracting statement from buggy version, we use LLMs to rewrite a new version of that statement. We
command LLMs to assume the bug is located in the assigned line and their target is correct that line. Here is
the prompt:

Given a buggy Python code snippet , you will be asked to debugging the code.
‘‘‘
def truncate_number(number: float) −> float:

return number ∗ (number % 1)
‘‘‘
Let assume the bug is located in this line:
‘‘‘ return number ∗ (number % 1) ‘‘‘
Adjust this line in order to solve the bug.
The re−written line must be syntactic correct , executable and wrapped in ‘‘‘ ‘‘‘

↩→ brace.
Don’t give any details.
Rewritten line:
‘‘‘ return number % 1.0‘‘‘

Given a buggy Java code snippet , you will be asked to debugging the code.
‘‘‘{code}‘‘‘
Let assume the bug is located in this line:
‘‘‘{line}‘‘‘
Adjust this line in order to solve the bug.
The re−written line must be syntactic correct , executable and wrapped in ‘‘‘ ‘‘‘

↩→ brace.
Don’t give any details.
Rewritten line:

We executing the problem with given test cases. Our target is to create reasonable false answer that would
require deep interpretation. Follow by an LLMs based filter to pick from pool of negative answer the most likely
able to solve the buggy problem. This result a set of confusing negative answer. Those reasonable false sample
with executable (and if they can pass through few testcases) is golden negative answer.

Fill in the blank distractor creation prompt:

From correct solution from leetcode, we randomly mask a line/a block of code and generate false answer (for
multiple choice) from LLMs:

Following this code:
{code}
I prepare some multiple choice questions answering
so i want to make small change on this line
but it still look true of this line : {line}
help me generate 3 version change in this code and each output should in ‘‘‘ ‘‘‘

↩→ brace and code only.
Don’t give any details

27

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

A.4.2. Experiment prompt configuration

Zero-shot prompts

General knowledge MCQ test set:
The following are multiple −choice questions (with answers) about software

↩→ development.

Question: {question}
{multiple_choices}

Answer:

Code completion:
The following are multiple −choice questions (with answers) about software

↩→ development.

Question: {question}
{multiple_choices}

Answer:

Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↩→ problem with an incomplete solution.

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the most
↩→ likely to complete the solution and achieve the desired goal?

{multiple_choices}

Answer:

Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↩→ programming problem.

Question: The implementation below is producing incorrect results. Which solution
↩→ below correctly identifies the bug and repairs it to achieve the desired goal?

{question}

{multiple_choices}

Answer:

28

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Defect Detection:
The following are multiple −choice questions (with answers) about programming

↩→ problems.

Question: Given a code snippet below , which behavior most likely to occur when
↩→ execute it?

{question}

{multiple_choices}

Answer:

29

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Few-shot prompt

General knowledge MCQ test set:
The following are multiple choice questions (with answers) about software

↩→ development.

Question: If a sorted array of integers is guaranteed to not contain duplicate
↩→ values , in order to search a for a specific value which of the following algorithms is
↩→ the most efficient for this task?

(A) Bubble Sort (B) Linear Search (C) Insertion Sort (D) Binary Search

Answer: The answer is (D).

Question: {question}
{multiple_choices}

Answer:

Code completion:

The following are multiple −choice questions (with answers) about programming
↩→ problems.

Question: Which solution below is the most likely completion the following code
↩→ snippet to achieve the desired goal?

‘‘‘python
from typing import List

def two_sum(nums: List[int], target: int) −> List[int]:
"""
Given an array of integers nums and an integer target , return indices of the

↩→ two numbers such that they add up to target.
You may assume that each input would have exactly one solution , and you may not

↩→ use the same element twice.

>>> two_sum ([2,7,11,15], 9)
[0,1]
>>> two_sum ([3,2,4], 6)
[1,2]
>>> two_sum ([3,3], 6)
[0,1]
"""

‘‘‘

(A) ‘‘‘python
n = len(nums)
for i in range(n − 1):

for j in range(i + 1, n):
if nums[i] + nums[j] == target:

return [i, j]
return []

‘‘‘
(B) ‘‘‘python

for num in nums:
if target − num in nums:

return [nums.index(num), nums.index(target − num)]
return []

‘‘‘

30

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

(C) ‘‘‘python
for i in range(len(nums)):

if nums[i] ∗ 2 == target:
return [i, i]

return []
‘‘‘
(D) ‘‘‘python

num_dict = {}
for i, num in enumerate(nums):

if target − num in num_dict:
return [num_dict[target − num], i]

num_dict[i] = num
return []

‘‘‘
Answer: The answer is A.

Question: Which solution below is the most likely completion the following code
↩→ snippet to achieve the desired goal?

‘‘‘python
{question}
‘‘‘

{multiple_choices}

Answer:’’’

31

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↩→ problem with incomplete solution.

Problem statement: You are given an array of intervals , where intervals[i] =
↩→ [starti , endi] and each starti is unique.

The right interval for an interval i is an interval j such that startj >= endi and
↩→ startj is minimized.

Note that i may equal j. Return an array of right interval indices for each
↩→ interval i.

If no right interval exists for interval i, then put −1 at index i.

Incomplete Solution:
python ‘‘‘
def find_right_interval(intervals):

n = len(intervals)
res = [−1] ∗ n
for i in range(n):

intervals[i]. append(i)

def binary_search(ele):
left , right = 0, n−1
ans = float(’inf’)
while left <= right:

mid = (left + right) // 2
if intervals[mid][0] >= ele:

ans = min(ans , mid)
right = mid − 1

else:
left = mid + 1

return ans

intervals.sort()
for i in intervals:

return res
‘‘‘
Question: The provided solution is missing a part , Which option below is the most

↩→ likely to complete the solution and achieve the desired goal?

32

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

(A) ‘‘‘python
val = binary_search(i[1])
if val != float(’inf’):

res[i[2]] = intervals[val][2]
‘‘‘
(B) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val][2]

else:
continue

‘‘‘
(C) ‘‘‘python

val = binary_search(i[1])
if val != float(’inf’): res[i[2] + 1] = intervals[val][2]

‘‘‘
(D) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val][2]

else:
continue

‘‘‘
Answer: The answer is (A).

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the most
↩→ likely to complete the solution and achieve the desired goal?

{multiple_choices}

Answer:

Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↩→ programming problem.

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↩→ desired goal?
{question}

{multiple_choices}

Answer:

33

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Defect Detection:
The following are multiple choice questions (with answers) about programming

↩→ problem.

Question: Given a code snippet below , which behavior most likely to occurr when
↩→ execute it?

‘‘‘python
def chkPair(A, size , x):

for i in range(0, size − 1):
for j in range(i + 1, size):

if (A[i] + A[j] == x):
return 1

return 0

‘‘‘

(A). The code contain no issue.
(B). Memory Limit Exceeded
(C). Internal error
(D). Runtime Error

Answer: The answer is (A).

Question: Given a code snippet below , which behavior most likely to occurr when
↩→ execute it?

{question}

{multiple_choices}

Answer:

34

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Chain-of-Thought zero-shot prompts

General knowledge MCQ test set:
The following are multiple choice questions (with answers) about software devopment.

Question: {question}
{multiple_choices}

Answer: Let’s think step by step.

Code completion:
The following are multiple choice questions (with answers) about programming

↩→ problems.

Question: Which solution below is the most likely completion the following code
↩→ snippet to achieve the desired goal?

‘‘‘python
{question}
‘‘‘
{multiple_choices}

Answer: Let’s think step by step.

Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↩→ problem with uncomplete solution.

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the most
↩→ likely to

complete the solution and achieve the desired goal?

{multiple_choices}

Answer: Let’s think step by step.

Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↩→ programming problem.

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↩→ desired goal?
{question}

{multiple_choices}

Answer: Let’s think step by step.

35

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Defect Detection:
The following are multiple −choice questions (with answers) about debugging a

↩→ programming problem.

The algorithm implementation below is producing incorrect results;
Which solution below correctly identifies the bug and repairs it to achieve the

↩→ desired goal?
{question}

{multiple_choices}

Answer: Let’s think step by step.

36

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Chain-of-Thought few-shot prompts

General knowledge MCQ test set:
The following are multiple choice questions (with answers) about software devopment.

Question: If a sorted array of integers is guaranteed to not contain duplicate
↩→ values , in order to search a for a specific value which of the following algorithms is
↩→ the most efficient for this task?

(A) Bubble Sort (B) Linear Search (C) Insertion Sort (D) Binary Search

Answer: Let’s think step by step. Binary Search is a divide −and −conquer algorithm
↩→ that works by repeatedly dividing the search interval in half and searching for the
↩→ value in the appropriate half. Since the array is already sorted and does not contain
↩→ any duplicate value , this algorithm is optimal to find the desired value. The answer is
↩→ (D).

Question: {question}
{multiple_choices}

Answer: Let’s think step by step.

37

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Code completion:
The following are multiple choice questions (with answers) about programming

↩→ problem.

Question: Which solution below is the most likely completion the following code
↩→ snippet to achieve the desired goal?

‘‘‘python
def is_vowel(char: str) −> bool:

"""
Checks if the input character is a vowel.
"""

‘‘‘

(A) ‘‘‘python
return char.lower().is_vowel ()

‘‘‘
(B) ‘‘‘python

vowels = set("aeiou")
return char.lower() in vowels

‘‘‘
(C) ‘‘‘python

vowels = set("aeiou")
return char.upper() in vowels

‘‘‘
(D) ‘‘‘python

vowels = "aeiou"
return char.count(vowels) > 0

‘‘‘

Answer: Let’s think step by step. The goal is to write a function is_vowel(char:
↩→ str) −> bool that checks if the input character char is a vowel. The solution B
↩→ correctly converts the input character to lowercase and checks if it is in the set of
↩→ vowels.

The answer is (B).

Question: Which solution below is the most likely completion the following code
↩→ snippet to achieve the desired goal?

‘‘‘python
{question}
‘‘‘
{multiple_choices}

Answer: Let’s think step by step.

38

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↩→ problem with uncomplete solution.

Problem statement: You are given an array of intervals , where intervals[i] =
↩→ [starti , endi] and each starti is unique.

The right interval for an interval i is an interval j such that startj >= endi and
↩→ startj is minimized.

Note that i may equal j. Return an array of right interval indices for each
↩→ interval i.

If no right interval exists for interval i, then put −1 at index i.

Incomplete Solution:
python ‘‘‘
def find_right_interval(intervals):

n = len(intervals)
res = [−1] ∗ n
for i in range(n):

intervals[i]. append(i)
def binary_search(ele):

left , right = 0, n−1
ans = float(’inf’)
while left <= right:

mid = (left + right) // 2
if intervals[mid][0] >= ele:

ans = min(ans , mid)
right = mid − 1

else:
left = mid + 1

return ans

intervals.sort()
for i in intervals:

return res
‘‘‘

Question: The provided solution is missing a part , Which option below is the most
↩→ likely to

complete the solution and achieve the desired goal?

(A) ‘‘‘python
val = binary_search(i[1])
if val != float(’inf’):

res[i[2]] = intervals[val][2]
‘‘‘
(B) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val][2]

else:
continue

‘‘‘
(C) ‘‘‘python

val = binary_search(i[1])
if val != float(’inf’): res[i[2] + 1] = intervals[val][2]

‘‘‘
(D) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val][2]

else:
continue

‘‘‘

39

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Answer: Let’s think step by step. The incomplete solution first sorts the intervals
↩→ and then iterates over the sorted intervals. For each interval , it finds the right
↩→ interval using a binary search.

This option (A) finds the right interval index using the binary search and updates
↩→ the result array accordingly.

The option (B) is similar to (A), but it does not increment the index when finding
↩→ the right interval index. This could lead to incorrect results.

The option (C) increments the index when finding the right interval index. However ,
↩→ this is incorrect because the problem statement asks for the index of the right
↩→ interval , not the offset from the original index.

The option (D) uses the same index for both the original interval and the right
↩→ interval , which could lead to incorrect results.

The answer is (A).

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the most
↩→ likely to

complete the solution and achieve the desired goal?

{multiple_choices}

Answer: Let’s think step by step.

Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↩→ programming problem.

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↩→ desired goal?
{question}

{multiple_choices}

Answer: Let’s think step by step.

40

CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs

Defect Detection:
The following are multiple choice questions (with answers) about programming

↩→ problem.

Question: Given a code snippet below , which behavior most likely to occurr when
↩→ execute it?

‘‘‘python
def chkPair(A, size , x):

for i in range(0, size − 1):
for j in range(i + 1, size):

if (A[i] + A[j] == x):
return 1

return 0

‘‘‘
(A). The code contain no issue.
(B). Memory Limit Exceeded
(C). Internal error
(D). Runtime Error

Answer: Let’s think step by step. The code appears to have no issues with typical
↩→ valid inputs and will function as expected. It correctly checks for pairs of elements
↩→ whose sum is x.

The answer is (A).

Question: Given a code snippet below , which behavior most likely to occurr when
↩→ execute it?

{question}
{multiple_choices}

Answer: Let’s think step by step.

41

	Introduction
	Related Work
	CodeMMLU: Data Construction
	Knowledge-based task creation
	Task Construction

	Experimental Results
	Setup
	Key Insights

	Conclusions
	Appendix
	Appendix
	Prompt comparison
	Data Cleaning and Filtering
	Multiple-Choice Question (MCQ) Answering Filtering
	Data quality Filtering

	CodeMMLU Visualization
	Prompt collection
	Data creation prompt
	Experiment prompt configuration

